Об одной нелокальной задаче для гиперболического уравнения с интегральными условиями первого рода

Анализ нелокальной задачи для гиперболического уравнения с интегральными условиями первого рода. Метод, позволяющий свести поставленную задачу к задаче с интегральным условием второго рода. Доказательство существования единственного обобщенного решения.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 31.05.2013
Размер файла 491,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Обзор краевых задач для уравнения смешанного эллептико-гиперболического типа. Доказательство существования единственного решения краевой задачи для одного уравнения гиперболического типа со специальными условиями сопряжения на линии изменения типа.

    контрольная работа [253,5 K], добавлен 23.04.2014

  • Поверхности второго порядка аналитической геометрии. Свойства гиперболического параболоида, порядок разыскания его прямолинейных образующих. Пример решения уравнения прямолинейных образующих для заданной поверхности гиперболического параболоида.

    курсовая работа [2,5 M], добавлен 26.05.2019

  • Первая краевая задача и граничное условие 1-го рода. Задачи с однородными граничными условиями. Задача с главными неоднородными условиями и ее вариационная постановка. Понятие обобщенного решения. Основные условия сопряжения и условия согласования.

    презентация [71,8 K], добавлен 30.10.2013

  • Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.

    реферат [1,0 M], добавлен 11.12.2014

  • Криволинейный интеграл первого рода. Двойной интеграл в декартовой и полярной системе координат. Интеграл по поверхности (первого рода). Приложение определенного интеграла в геометрии: площадь плоской фигуры и цилиндрической поверхности, объем тела.

    методичка [517,1 K], добавлен 27.01.2012

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция [744,1 K], добавлен 24.11.2010

  • Несобственные интегралы первого рода. Понятие абсолютно и условно сходящегося интеграла. Несобственные интегралы второго рода. Определение непрерывности функции и равномерной сходимости. Свойства несобственных интегралов, зависящих от параметра.

    курсовая работа [240,1 K], добавлен 23.03.2011

  • Метод разделения переменных в задаче Штурма-Лиувилля. Единственность решения смешанной краевой задачи, реализуемая методом априорных оценок. Постановка и решение смешанной краевой задачи для нелокального волнового уравнения с дробной производной.

    курсовая работа [1003,8 K], добавлен 29.11.2014

  • Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.

    презентация [270,1 K], добавлен 21.09.2013

  • Уравнение Лапласа в цилиндрических координатах. Бесселевы функции первого рода и их практическое применение. Общее решение уравнения Бесселя. Функции Бесселя полуцелого порядка. Некоторые дифференциальные уравнения, приводимые к уравнению Бесселя.

    контрольная работа [122,8 K], добавлен 02.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.