Коммутативные алгебры Лейбница-Пуассона полиномиального роста

Исследование конечной базируемости многообразий коммутативных алгебр Лейбница-Пуассона полиномиального роста в случае основного поля нулевой характеристики, их ограничение полиномом. Исследование частных случаев задачи, доказательство основных теорем.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 31.05.2013
Размер файла 549,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Числовые характеристики положения о распределении Пуассона и разброса. Асимметрия и эксцесс распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра. Пример условия, при котором возникает распределение Пуассона.

    курсовая работа [116,2 K], добавлен 22.05.2010

  • История развития и становления математического понятия функции. Абстрактные характеристики упорядоченных алгебр многоместных функций: P-алгебры и D-алгебры. Исследование теории суперпозиций алгебраических структур n-местных функций Менгера и Глускера.

    курсовая работа [263,7 K], добавлен 22.12.2015

  • Распределение случайной величины c помощью закона Пуассона. Вычисления математического ожидания и дисперсии. Метод наибольшего правдоподобия. Асимметрия распределения Пуассона, его дополнительные характеристики, точечная и интервальная оценка параметра.

    презентация [710,3 K], добавлен 01.11.2013

  • Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.

    курсовая работа [399,1 K], добавлен 22.09.2009

  • Метод интегрирования по частям. Задача на нахождение частных производных 1-го порядка. Исследование на экстремум заданную функцию. Нахождение частных производных. Неоднородное линейное дифференциальное уравнение 2-го порядка. Условия признака Лейбница.

    контрольная работа [90,0 K], добавлен 24.10.2010

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа [294,7 K], добавлен 17.06.2014

  • Оценка алгебры Ли как одного из классических объектов современной математики. Основные определения и особенности ассоциативной алгебры. Нильпотентные алгебры Ли, эквивалентность различных определений нильпотентности. Описание алгебр Ли малых размерностей.

    курсовая работа [79,4 K], добавлен 13.12.2011

  • Теория вероятности – математическая наука, изучающая закономерности в случайных явлениях. Метод наибольшего правдоподобия. Доверительные оценки. Точечные оценки и критерий согласия. Теорема Чебышева. Распределение Пуассона. Доверительный интервал.

    курсовая работа [349,0 K], добавлен 16.01.2009

  • Решение задачи по нахождению площади криволинейной трапеции. Определение и свойства определённого интеграла. Необходимое условие интегрируемости и критерий Дарбу. Интегрируемость непрерывных и монотонных функций. Доказательство формулы Ньютона-Лейбница.

    контрольная работа [383,6 K], добавлен 25.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.