Многоугольники и их свойства

Многоугольник как замкнутая ломаная без самопересечений. Доказательство теоремы методом математической индукции. Треугольник общего вида. Центр правильного многоугольника с четным числом сторон. Отношение периметров двух подобных многоугольников.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 06.06.2012
Размер файла 60,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Теоретические основы изучения площадей многоугольников. Вычисление площадей в древности. Различные подходы к изучению понятий "площадь", "многоугольник", "площадь многоугольника". Вычисление площади многоугольника по координатам его вершин. Формула Пика.

    дипломная работа [1,1 M], добавлен 24.02.2010

  • Предикатное представление условий непересечения многоугольников. Алгоритм непересечения многоугольника и полосы. Определение направления обхода вершин многоугольника. Решение систем линейных алгебраических уравнений. Построение интерактивной оболочки.

    дипломная работа [800,2 K], добавлен 10.11.2012

  • Многоугольники, теорема Бойяи-Гервина. Лемма о целых решениях системы однородных линейных уравнений с рациональными коэффициентами. Понятия для доказательства теоремы Дена-Кагана. Задача на деление квадрата на восемь остроугольных треугольников.

    курсовая работа [1,3 M], добавлен 27.05.2012

  • Формулировки и доказательства китайской теоремы об остатках. Доказательство с помощью метода математической индукции. Конструктивный метод доказательства. Основные алгоритмы поиска решения. Применение китайской теоремы об остатках к открытию сейфа.

    курсовая работа [1,0 M], добавлен 08.01.2022

  • Доказательство теоремы Пифагора методами элементарной алгебры: методом решения параметрических уравнений в сочетании с методом замены переменных. Существование бесконечного количества троек пифагоровых чисел и, соответственно, прямоугольных треугольников.

    творческая работа [17,4 K], добавлен 25.06.2009

  • Доказательство утверждения "Уравнение al+bq=cq (где l и q больше или равно 3) не имеет решений в отличных от нуля попарно взаимно простых целых числах a, b и c таких, чтобы a - было четным, b и c - нечетными целыми числами". Частный случай теоремы Ферма.

    творческая работа [856,3 K], добавлен 08.08.2010

  • Свойства изящной математической системы - треугольника Паскаля, в котором каждое число равно сумме двух расположенных над ним чисел. Расстановка шаров в бильярде как классический пример треугольника Паскаля. Изображение треугольника Паскаля в виде точек.

    презентация [382,4 K], добавлен 16.12.2010

  • Выполнение доказательства теорем Пифагора, Ферма и гипотезы Биля методом параметрических уравнений в сочетании с методом замены переменных. Уравнение теоремы Ферма как частный вариант уравнения гипотезы Биля, а уравнение теоремы Ферма – теоремы Пифагора.

    творческая работа [64,8 K], добавлен 20.05.2009

  • Формулирование и доказательство великой теоремы Ферма методами элементарной алгебры с использованием метода замены переменных для показателя степени n=4. Необходимые условия решения уравнения. Отсутствие решения теоремы в целых положительных числах.

    творческая работа [27,7 K], добавлен 17.10.2009

  • Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.

    презентация [3,5 M], добавлен 19.02.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.