Поиск оптимального маршрута в нагруженном ориентированном графе
Понятие и определение графа, геометрическое изображение его вершин и элементов. Сущность маршрута в графе, простой и замкнутый циклы. Доказательство алгоритма Беллмана, построение блок-схемы нахождения расстояния от источника до всех вершин графа.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.04.2011 |
Размер файла | 179,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Метод Форда-Беллмана для нахождения расстояния от источника до всех вершин графа. Алгоритмы поиска расстояний и отыскания кратчайших путей в графах. Блочно-диагональный вид и матрица в исследовании системы булевых функций и самодвойственной функции.
курсовая работа [192,1 K], добавлен 10.10.2011Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.
курсовая работа [228,5 K], добавлен 30.01.2012Доказательство тождества с помощью диаграмм Эйлера-Венна. Определение вида логической формулы с помощью таблицы истинности. Рисунок графа G (V, E) с множеством вершин V. Поиск матриц смежности и инцидентности. Определение множества вершин и ребер графа.
контрольная работа [463,0 K], добавлен 17.05.2015Восстановление графов по заданным матрицам смежности вершин. Построение для каждого графа матрицы смежности ребер, инцидентности, достижимости, контрдостижимости. Поиск композиции графов. Определение локальных степеней вершин графа. Поиск базы графов.
лабораторная работа [85,5 K], добавлен 09.01.2009Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.
курсовая работа [625,4 K], добавлен 30.09.2014Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.
лабораторная работа [34,0 K], добавлен 29.04.2011Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа [951,4 K], добавлен 22.01.2014Понятие "граф" и его матричное представление. Свойства матриц смежности и инцидентности. Свойства маршрутов, цепей и циклов. Задача нахождения центральных вершин графа, его метрические характеристики. Приложение теории графов в областях науки и техники.
курсовая работа [271,1 K], добавлен 09.05.2015Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.
реферат [108,4 K], добавлен 01.12.2008Понятия и определения орграфа и неориентированного графа, методы решения. Неориентированные и ориентированные деревья. Подробное описание алгоритмов нахождения кратчайших путей в графе: мультиграф, псевдограф. Матрица достижимостей и контрдостижимостей.
курсовая работа [251,0 K], добавлен 16.01.2012