Метод вращений (Якоби) для нахождения собственных значений и собственных векторов матриц
Определения и пример нахождения собственного значения и собственного вектора матрицы. Системы линейных алгебраических уравнений. Методы Зейделя и Якоби для решения систем линейных алгебраических уравнений. Программа на C++ для решения СЛАУ методом Якоби.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.04.2011 |
Размер файла | 357,1 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Собственные значения и вектора матрицы. Применение итерационного метода вращений Якоби для решения симметричной полной проблемы собственных значений эрмитовых матриц. Алгоритмы решения задач и их реализация на современных языках программирования.
курсовая работа [321,6 K], добавлен 15.11.2015Нахождение собственных значений и собственных векторов матриц. Нетривиальное решение однородной системы линейных алгебраических уравнений. Метод нахождения характеристического многочлена, предложенный А.М. Данилевским. Получение формы Жордано: form.exe.
курсовая работа [53,4 K], добавлен 29.08.2010Сущность итерационного метода решения задачи, оценка его главных преимуществ и недостатков. Разновидности итерационных методов решения систем линейных алгебраических уравнений: Якоби, Хорецкого и верхней релаксации, их отличия и возможности применения.
курсовая работа [39,2 K], добавлен 01.12.2009Характеристика способов решения систем линейных алгебраических уравнений (СЛАУ). Описание проведения вычислений на компьютере методом Гаусса, методом квадратного корня, LU–методом. Реализация метода вращений средствами системы программирования Delphi.
курсовая работа [118,4 K], добавлен 04.05.2014Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.
контрольная работа [397,2 K], добавлен 13.12.2010Методы решения систем линейных алгебраических уравнений (СЛАУ): Гаусса и Холецкого, их применение к конкретной задаче. Код программы решения перечисленных методов на языке программирования Borland C++ Builder 6. Понятие точного метода решения СЛАУ.
реферат [58,5 K], добавлен 24.11.2009Основные действия над матрицами, операция их умножения. Элементарные преобразования матрицы, матричный метод решения систем линейных уравнений. Элементарные преобразования систем, методы решения произвольных систем линейных уравнений, свойства матриц.
реферат [111,8 K], добавлен 09.06.2011Ненулевые элементы поля. Таблица логарифма Якоби. Матрица системы линейных уравнений. Перепроверка по методу Евклида. Формула быстрого возведения. Определение матрицы методом Гаусса. Собственные значений матрицы. Координаты собственного вектора.
контрольная работа [192,1 K], добавлен 20.12.2012Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.
курсовая работа [209,1 K], добавлен 27.04.2011Изучение основ линейных алгебраических уравнений. Нахождение решения систем данных уравнений методом Гаусса с выбором ведущего элемента в строке, в столбце и в матрице. Выведение исходной матрицы. Основные правила применения метода факторизации.
лабораторная работа [489,3 K], добавлен 28.10.2014