Исследование методов сопряженных градиентов и градиентного спуска
Задача поиска минимума функции. Теоремы сходимости метода градиентного спуска. Выбор оптимального шага. Градиентный метод с дроблением шага. Геометрическая интерпретация метода наискорейшего спуска. Необходимость решения одномерной задачи оптимизации.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 23.04.2011 |
Размер файла | 889,9 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Общая схема методов спуска. Метод покоординатного спуска. Минимизация целевой функции по выбранным переменным. Алгоритм метода Гаусса-Зейделя. Понятие градиента функции. Суть метода наискорейшего спуска. Программа решения задачи дискретной оптимизации.
курсовая работа [90,8 K], добавлен 30.04.2011Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа [533,9 K], добавлен 26.04.2014Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа [1,4 M], добавлен 16.08.2010Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.
контрольная работа [878,3 K], добавлен 26.12.2012Определение допустимого решения задачи линейного программирования методом введения искусственного базиса. Целочисленное линейное программирование с булевскими переменными. Поиск минимума функции методом градиентного спуска. Одномерная минимизация.
курсовая работа [281,7 K], добавлен 27.05.2013Формирование функции Лагранжа, условия Куна и Таккера. Численные методы оптимизации и блок-схемы. Применение методов штрафных функций, внешней точки, покоординатного спуска, сопряженных градиентов для сведения задач условной оптимизации к безусловной.
курсовая работа [1,8 M], добавлен 27.11.2012Поиск оптимального решения. Простейший способ исключения ограничений. Многомерные методы оптимизации, основанные на вычислении целевой функции. Метод покоординатного спуска. Модифицированный метод Хука-Дживса. Исследование на минимум функции Розенброка.
курсовая работа [697,6 K], добавлен 21.11.2012Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.
курсовая работа [197,8 K], добавлен 01.10.2009Геометрическая интерпретация методов Ньютона, итерации и спуска. Определение корня уравнения с заданной степенью точности. Решение систем нелинейных алгебраических уравнений. Нахождение эквивалентного преобразования для выполнения условия сходимости.
курсовая работа [371,6 K], добавлен 14.01.2015Решение дифференциальных уравнений в частных производных. Метод минимальных невязок, минимальных поправок, скорейшего спуска, сопряженных градиентов. Алгоритмы и блок-схемы решения. Руководство пользователя программы. Решение системы с матрицей.
курсовая работа [380,3 K], добавлен 21.01.2014