Золотое сечение – гармоническая пропорция
Особенность геометрического изображения золотой пропорции. Исследование деления отрезка прямой по золотому сечению. Построение композиций изображений удлиненного горизонтального формата. Анализ деления прямоугольника линией второго золотого сечения.
Рубрика | Математика |
Вид | доклад |
Язык | русский |
Дата добавления | 22.10.2020 |
Размер файла | 63,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ЗДРАВОХРАНЕНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ РЕСПУБЛИКИ БАШКОРТОСТАН «СТЕРЛИТАМАКСКИЙ МЕДИЦИНСКИЙ КОЛЛЕДЖ» (ГАПОУ РБ «СТЕРЛИТАМАКСКИЙ МЕДИЦИНКИЙ КОЛЛЕДЖ»)
Доклад
По предмету: «Математика»
На тему: «Золотое сечение - гармоническая пропорция»
Выполнил:
Егорова Валерия Александровна
Проверил:
Громова Юлия Владимировна
2020 г
Содержание
1. Построение золотого сечения
2. Золотое сечение - гармоническая пропорция
3. Второе золотое сечение
Литература
1. Построение золотого сечения
Человек различает окружающие его предметы по форме. Интерес к форме какого-либо предмета может быть продиктован жизненной необходимостью, а может быть вызван красотой формы. Форма, в основе построения которой лежат сочетание симметрии и золотого сечения, способствует наилучшему зрительному восприятию и появлению ощущения красоты и гармонии. Целое всегда состоит из частей, части разной величины находятся в определенном отношении друг к другу и к целому. Принцип золотого сечения - высшее проявление структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе.
2. Золотое сечение - гармоническая пропорция
В математике пропорцией (лат. proportio) называют равенство двух отношений: a : b = c : d.
Отрезок прямой АВ можно разделить на две части следующими способами: золотой сечение деление прямоугольник
*на две равные части - АВ : АС = АВ : ВС;
*на две неравные части в любом отношении (такие части пропорции не образуют);
*таким образом, когда АВ : АС = АС : ВС.
Последнее и есть золотое деление или деление отрезка в крайнем и среднем отношении.
Золотое сечение - это такое пропорциональное деление отрезка на неравные части, при котором весь отрезок так относится к большей части, как сама большая часть относится к меньшей; или другими словами, меньший отрезок так относится к большему, как больший ко всему
a : b = b : c или с : b = b : а.
Рис. 1. Геометрическое изображение золотой пропорции
Практическое знакомство с золотым сечением начинают с деления отрезка прямой в золотой пропорции с помощью циркуля и линейки.
Рис. 2. Деление отрезка прямой по золотому сечению. BC = 1/2 AB; CD = BC
Из точки В восставляется перпендикуляр, равный половине АВ. Полученная точка С соединяется линией с точкой А. На полученной линии откладывается отрезок ВС, заканчивающийся точкой D. Отрезок AD переносится на прямую АВ. Полученная при этом точка Е делит отрезок АВ в соотношении золотой пропорции.
Отрезки золотой пропорции выражаются бесконечной иррациональной дробью AE = 0,618..., если АВ принять за единицу, ВЕ = 0,382... Для практических целей часто используют приближенные значения 0,62 и 0,38. Если отрезок АВ принять за 100 частей, то большая часть отрезка равна 62, а меньшая - 38 частям.
Свойства золотого сечения описываются уравнением:
x2 - x - 1 = 0.
Решение этого уравнения:
Свойства золотого сечения: решение уравнения
Свойства золотого сечения создали вокруг этого числа романтический ореол таинственности и чуть ли не мистического поклонения.
3. Второе золотое сечение
Болгарский журнал «Отечество» (№10, 1983 г.) опубликовал статью Цветана Цекова-Карандаша «О втором золотом сечении», которое вытекает из основного сечения и дает другое отношение 44 : 56. Болгарский журнал «Отечество» (№10, 1983 г.)
Такая пропорция обнаружена в архитектуре, а также имеет место при построении композиций изображений удлиненного горизонтального формата.
Рис. 3. Построение второго золотого сечения
Деление осуществляется следующим образом. Отрезок АВ делится в пропорции золотого сечения. Из точки С восставляется перпендикуляр СD.
Радиусом АВ находится точка D, которая соединяется линией с точкой А.
Прямой угол АСD делится пополам. Из точки С проводится линия до пересечения с линией AD. Точка Е делит отрезок AD в отношении 56 : 44.
Рис. 4. Деление прямоугольника линией второго золотого сечения
На рисунке показано положение линии второго золотого сечения. Она находится посередине между линией золотого сечения и средней линией прямоугольника.
Литература
1. Кудрявцев С.П. История физики. Т. М., 1956.
2. Вавилов С.И. Исаак Ньютон. М., 1961.
3. Болгарский журнал «Отечество» (№10, 1983 г.)
Размещено на Allbest.ru
Подобные документы
Понятие "золотое сечение" как пропорции, деления в крайнем и среднем отношении. Математические свойства сечения, его использование в музыке, архитектуре, искусстве. Пропорции тела человека. Исследование распространения "золотого сечения" в природе.
презентация [1,9 M], добавлен 27.02.2012Изучение принципа золотого сечения – высшего проявления структурного и функционального совершенства целого и его частей в искусстве, науке, технике и природе. Золотое сечение – гармоническая пропорция. Деление отрезка прямой. Динамические прямоугольники.
презентация [1,5 M], добавлен 14.12.2011Определенное отношение длин отрезков. Сооружения, построенные в золотой пропорции. Основы симметрии и ассиметрии. Пропорции мужского тела и золотого сечения. Золотые пропорции в частях тела человека. "Золотое сечение" в математике, архитектуре, живописи.
презентация [290,4 K], добавлен 12.05.2011Понятие золотого сечения. История открытия "золотой" пропорции, ее использование в архитектуре, живописи и природе. Проведение исследования, доказывающего утверждение Ле Корбюзье. Примеры золотого сечения. Геометрическая загадка портрета Джоконды.
презентация [7,0 M], добавлен 10.11.2014Определение золотого сечения и его роль в науке. Присутствие золотого сечения в окружающей жизни. Золотое сечение в расположении листьев на стебле и в пропорциях тела. Деление тела точкой пупа. Числа Фибоначчи, золотая пропорция и тело человека.
реферат [2,2 M], добавлен 09.04.2012Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.
реферат [584,7 K], добавлен 22.03.2015Эстетический потенциал математического объекта. Использование золотого прямоугольника в живописи. Пропорциональный циркуль Дюрера. Золотое сечение и гармония в искусстве. Золотой ряд Фибоначчи. Использование орнаментальной и зеркальной симметрий.
курсовая работа [615,2 K], добавлен 11.09.2012Использование принципов "золотого сечения" в математике, физике, биологии, астрономии, в архитектуре и других науках и искусствах. Обзор истории и математической сущности золотого сечения, осмысление его роли в современной науке; "математика гармонии".
реферат [20,3 K], добавлен 24.11.2009Основатели учения о золотом сечении. Самый "правильный" многогранник. Математическое пропорциональное содержание пентаграммы. Золотое сечение в архитектуре, в живописи и в живых организмах. Пропорции Покровского Собора на Красной площади в Москве.
презентация [580,5 K], добавлен 16.10.2013Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.
курсовая работа [416,0 K], добавлен 09.08.2015