Солитоны в нелинейном уравнении Шредингера с пространственно индуцированным рассеянием Рамана и неоднородным потенциалом
Солитоны как пространственно локализованные частицы, которые подобны волнам, восстанавливающим свою форму. Анализ динамики солитонов в рамках связного расширенного нелинейного уравнения Шрёдингера с учетом псевдо-идуцированного рассеяния Рамана.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 17.07.2020 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Квантовый гармонический осциллятор. Уравнение Шредингера и методы его решения. Решение уравнения через полиномы Эрмита. Особенности волновых функций. Метод обобщенных степеней Берса. ОСБ и их графики для конкретного случая. Анализ полученных функций.
реферат [430,2 K], добавлен 10.03.2013Методы решения одного нелинейного уравнения: половинного деления, простой итерации, Ньютона, секущих. Код программы решения перечисленных методов на языке программирования Microsoft Visual C++ 6.0. Применение методов к конкретной задаче и анализ решений.
реферат [28,4 K], добавлен 24.11.2009Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.
лабораторная работа [463,7 K], добавлен 28.06.2013Розвиток теорії задачi Кошi та двоточкової задачi для еволюцiйних рiвнянь з псевдо-Бесселевими операторами в класах початкових умов, що є узагальненими. Вивчення властивостей перетворення Бесселя функції та оператора узагальненого зсуву аргументу.
автореферат [21,1 K], добавлен 11.04.2009Графическое решение нелинейного уравнения. Уточнение значение одного из действительных решений уравнения методами половинного деления, Ньютона–Рафсона, секущих, простой итерации, хорд и касательных, конечно-разностным и комбинированным методом Ньютона.
лабораторная работа [32,7 K], добавлен 11.06.2011Приближенные значения корней. Метод дихотомии (или деление отрезка пополам), простой итерации и Ньютона. Метод деления отрезка пополам для решения уравнения. Исследование сходимости метода Ньютона. Построение нескольких последовательных приближений.
лабораторная работа [151,3 K], добавлен 15.07.2009Характеристика недостатков существующего метода перспективных построений и теории линейной перспективы. Основные характеристики процесса реализации перспективы. Принципы закона реалистического изображения пространственно расположенных предметов.
курсовая работа [11,4 M], добавлен 09.04.2015Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.
презентация [1,4 M], добавлен 26.09.2013Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.
задача [226,9 K], добавлен 21.06.2009Уравнения третьей степени и выше. Разложение левой части уравнения на множители, если правая часть равна нулю. Теорема Безу как один из методов, которые помогают решать уравнения высоких степеней. Определение и доказательство теоремы и следствия из нее.
научная работа [44,3 K], добавлен 25.02.2009Раскрытие понятия об уравнение Дирака и вывод его решения в виде плоских волн. Обозначение матриц и рассмотрение их основных свойств. Определение понятия спинора и релятивистских обозначений пространственно-временных координат и метрических тензоров.
курсовая работа [282,8 K], добавлен 14.06.2011Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Теория математического программирования. Методы поиска глобального экстремума функции нескольких переменных. Угловые точки допустимых множеств. Постановка общей задачи нелинейного программирования. Решения уравнения f(x)=0 методом простой итерации.
контрольная работа [775,4 K], добавлен 05.01.2013Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа [391,5 K], добавлен 01.03.2012Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Банаховы функциональные пространства. Постановка краевой задачи и исследование ее однозначной разрешимости и отрицательности функции Грина. Признаки существования решения краевой задачи для нелинейного функционально-дифференциального уравнения.
курсовая работа [440,4 K], добавлен 27.05.2015Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.
презентация [94,6 K], добавлен 08.11.2011Понятие и структура, принципы и этапы решения линейных уравнений. Уточнение корней методами половинного деления, хорд и Нютона. Пакет MathCad, использование программных фрагментов. Описание документа MathCAD, его стриктура и основные принципы работы.
курсовая работа [223,1 K], добавлен 18.07.2014Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012