Основы булевой алгебры
Проведение исследования основных операций булевой алгебры. Получение практических навыков по преобразованию и упрощению булевых выражений методами непосредственных преобразований и карт Карно. Построение выражений в форме канонической суммы минтермов.
Рубрика | Математика |
Предмет | Математика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | И.В. Чепелев |
Дата добавления | 28.01.2020 |
Размер файла | 119,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Логический синтез устройства с использованием соотношений булевой алгебры. Составление таблицы истинности. Основные соотношения булевой алгебры. Логическая функция в смысловой, словесной, вербальной, табличной и аналитической математической формах.
лабораторная работа [83,6 K], добавлен 26.11.2011Сокращенные, тупиковые дизъюнктивные нормальные формы. Полные системы булевых функций. Алгоритм Квайна, Мак-Класки минимизации булевой функции. Геометрическое представление логических функций. Геометрический метод минимизации булевых функций. Карты Карно.
курсовая работа [278,1 K], добавлен 21.02.2009Операции над логическими высказываниями: булевы функции и выражение одних таких зависимостей через другие. Пропозициональные формулы и некоторые законы логики высказываний. Перевод выражений естественного языка на символическую речь алгебры логики.
контрольная работа [83,3 K], добавлен 26.04.2011Логика - наука о законах и формах мышления, а основное понятие алгебры логики - высказывание. Основные понятия и тождества булевой алгебры. Изучение методов минимизации булевых функций. Метод Квайна, основанный на применении двух основных соотношений.
контрольная работа [178,2 K], добавлен 20.01.2011Представление с помощью кругов Эйлера множественного выражения. Законы и свойства алгебры множеств, упрощение выражений. Система функций, ее возможные базисы. Минимизирование булевой функции. Метод Квайна – Мак-Класки. Определение хроматического числа.
контрольная работа [375,6 K], добавлен 17.01.2011Булевы алгебры – решетки особого типа, применяемые при исследовании логики (как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Минимальные формы булевых многочленов. Теоремы абстрактной булевой алгебры.
курсовая работа [64,7 K], добавлен 12.05.2009Основные этапы развития булевой алгебры и применение минимальных форм булевых многочленов к решению задач, в частности, с помощью метода Куайна - Мак-Класки. Применение минимизирования логических форм при проектировании устройств цифровой электроники.
курсовая работа [58,6 K], добавлен 24.05.2009Характеристика булевой алгебры и способы представления булевых функций. Понятие и сущность бинарных диаграммах решений. Упорядоченные бинарные диаграммы решений, их построение и особенности применения для обработки запросов в реляционных базах данных.
дипломная работа [391,7 K], добавлен 21.01.2010Минимизация заданного выражения алгебры множеств на основании известных свойств. Анализ заданного бинарного отношения в общем виде. Вывод формул булевых функций для каждого элемента и схемы в целом. Преобразование формулы булевой функции логической схемы.
контрольная работа [286,7 K], добавлен 28.02.2009Основные аксиомы и тождества алгебры логики. Аналитическая форма представления булевых функций. Элементарные функции алгебры логики. Функции алгебры логики одного аргумента и формы ее реализации. Свойства, особенности и виды логических операций.
реферат [63,3 K], добавлен 06.12.2010