Разработка гибридных локально-стохастических методов оптимизации
Методы локально-стохастического поиска минимума функции. Исследование гибридного метода, полученного на базе способов поиска. Адаптивный алгоритм случайного поиска, метод наилучшей пробы с его градиентной вариацией и гранулярный радиальный поиск.
Рубрика | Математика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 07.12.2019 |
Размер файла | 9,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Поиск оптимального решения. Простейший способ исключения ограничений. Многомерные методы оптимизации, основанные на вычислении целевой функции. Метод покоординатного спуска. Модифицированный метод Хука-Дживса. Исследование на минимум функции Розенброка.
курсовая работа [697,6 K], добавлен 21.11.2012Изучение методов одномерной оптимизации и сравнение эффективности их применения для конкретных целевых функций. Нахождение минимума функции 1/|x-3|3 методами перебора, поразрядного поиска, дихотомии, золотого сечения, средней точки, хорд и Ньютона.
курсовая работа [761,8 K], добавлен 25.12.2015Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.
лабораторная работа [533,9 K], добавлен 26.04.2014Численные методы поиска безусловного экстремума. Задачи безусловной минимизации. Расчет минимума функции методом покоординатного спуска. Решение задач линейного программирования графическим и симплексным методом. Работа с программой MathCAD.
курсовая работа [517,9 K], добавлен 30.04.2011Методы последовательного поиска: деление отрезка пополам, золотого сечения, Фибоначчи. Механизмы аппроксимации, условия и особенности их применения. Методы с использованием информации о производной функции: средней точки, Ньютона, секущих, кубической.
курсовая работа [361,5 K], добавлен 10.06.2014Поиск оптимальных значений некоторых параметров в процессе решения задачи оптимизации. Сравнение двух альтернативных решений с помощью целевой функции. Теорема Вейерштрасса. Численные методы поиска экстремальных значений функций. Погрешность решения.
презентация [80,6 K], добавлен 18.04.2013Законы алгебры Буля и их применение для преобразования логических выражений. Расчет информационной емкости документов предметной области. Построение инфологической, реляционной и даталогической моделей. Применение методов поиска и сортировки данных.
курсовая работа [261,7 K], добавлен 05.01.2013Сущность сопряженных направлений, знакомство с основными алгоритмами. Особенности поиска минимума функции методом Пауэлла. Разработка приложений с графическим интерфейсом. Исследование квадратичных функций, решение задач методом сопряженных направлений.
курсовая работа [2,8 M], добавлен 14.07.2012Рассмотрение эффективности применения методов штрафов, безусловной оптимизации, сопряженных направлений и наискорейшего градиентного спуска для решения задачи поиска экстремума (максимума) функции нескольких переменных при наличии ограничения равенства.
контрольная работа [1,4 M], добавлен 16.08.2010Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.
контрольная работа [878,3 K], добавлен 26.12.2012