Геометричний зміст модуля

Визначення поняття модулю числа та спосіб його позначення. Знаходження модулю додатного числа або 0, від'ємного числа. Чи може модуль якого-небудь числа бути від'ємним числом. Знаходження модулів двох протилежних чисел. Перевірка домашнього завдання.

Рубрика Математика
Предмет Математика
Вид конспект урока
Язык украинский
Прислал(а) nato4ka_r
Дата добавления 20.09.2018
Размер файла 82,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа [507,8 K], добавлен 10.04.2011

  • Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.

    реферат [75,3 K], добавлен 22.02.2010

  • Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.

    презентация [60,3 K], добавлен 17.09.2013

  • Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности к её диаметру. История числа "е", мнемоника и мнемоническое правило, числа с собственными именами.

    реферат [125,9 K], добавлен 28.11.2010

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа [1,1 M], добавлен 10.12.2008

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.

    курсовая работа [352,9 K], добавлен 17.05.2021

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация [147,4 K], добавлен 17.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.