Властивості рівнянь

Вироблення вмінь застосування властивостей рівносильності рівнянь. Приклади розв'язування рівнянь, що містять дроби (раціональні або звичайні). Завдання на виконання множення обох частин рівняння на одне й те саме число та позбавлення дробових чисел.

Рубрика Математика
Вид конспект урока
Язык украинский
Дата добавления 26.09.2018
Размер файла 53,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.

    курсовая работа [605,9 K], добавлен 29.04.2014

  • Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.

    курсовая работа [229,8 K], добавлен 13.05.2013

  • Теоретичні основи розв’язування рівнянь з параметрами. Функція пряма пропорційність. Загальне поняття про аналітичний та графічний метод. Дробово-раціональні рівняння з параметрами, що зводяться до лінійних. Система розв’язування задач для 9 класу.

    курсовая работа [596,8 K], добавлен 21.03.2013

  • Лінійні діофантові рівняння. Невизначені рівняння вищих порядків. Невизначене рівняння Ферма. Приклади розв’язання лінійних діофантових рівнянь та системи лінійних діофантових рівнянь. Алгоритми знаходження всіх цілочисельних розв’язків рівнянь.

    курсовая работа [1,7 M], добавлен 29.12.2010

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа [723,3 K], добавлен 07.01.2016

  • Умова існування цілих розв’язків лінійних діофантових рівнянь, алгоритм Евкліда. Розв’язування лінійних рівнянь з двома змінними в цілих числах. Методика вивчення діофантових рівнянь в загальноосвітніх школах. Діофантові рівняння вищих порядків.

    курсовая работа [758,4 K], добавлен 15.05.2019

  • Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.

    контрольная работа [170,2 K], добавлен 16.05.2010

  • Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.

    лабораторная работа [412,4 K], добавлен 21.10.2014

  • Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.

    реферат [543,7 K], добавлен 23.04.2015

  • Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.

    отчет по практике [143,9 K], добавлен 02.03.2010

  • Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції.

    дипломная работа [1,4 M], добавлен 26.01.2011

  • Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.

    задача [73,5 K], добавлен 25.03.2011

  • Системи лінійних алгебраїчних рівнянь, головні означення. Коротка характеристика головних особливостей матричного способу, методу Жордано-Гаусса. Формули Крамера, теорема Кронекера-Капеллі. Практичний приклад розв’язання однорідної системи рівнянь.

    курсовая работа [690,9 K], добавлен 25.04.2013

  • Задача Коші і крайова задача. Двоточкова крайова задача для диференціального рівняння другого порядку. Види граничних умов. Метод, заснований на заміні розв’язку крайової задачі розв’язком декількох задач Коші. Розв'язування систем нелінійних рівнянь.

    презентация [86,2 K], добавлен 06.02.2014

  • Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.

    курсовая работа [86,0 K], добавлен 15.09.2008

  • Визначення поняття "рівняння з параметрами", розгляд принципів рішення даних рівнянь на загальних випадках. Особливості методів розв'язання рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.

    реферат [68,3 K], добавлен 15.02.2011

  • Вивчення теоретичних положень про симетричні многочлени і їх властивості: загальне поняття і характеристика властивостей. Математичне вживання симетричних многочленів: розв'язування систем рівнянь, доведення тотожності, звільнення від ірраціональності.

    курсовая работа [1,3 M], добавлен 04.04.2011

  • Схема класифікації та методи розв'язування рівнянь. Метод половинного ділення. Алгоритм. Метод хорд, Ньютона, їх проблеми. Граф-схема алгоритму Ньютона. Метод простої ітерації. Питання збіжності методу простої ітерації. Теорема про стискаючі відображення.

    презентация [310,1 K], добавлен 06.02.2014

  • Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.

    курсовая работа [2,0 M], добавлен 30.11.2010

  • Застосування методу Гауса (або методу послідовного виключення невідомих) для розв'язання систем лінійних рівнянь. Економний спосіб запису за допомогою компактної схеми Гауса. Алгоритм знаходження рангу матриці, метод Гауса з вибором головного елемента.

    курсовая работа [879,9 K], добавлен 02.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.