Роль математики в современном мире
Повышение культуры мышления, формирование научного мировоззрения как цель изучения математики. Современное понятие математики. Применение алгебраических структур. Математические модели объектов. Проникновение математики в различные отрасли знаний.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 25.07.2018 |
Размер файла | 17,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Роль математики в современном мире
Физико-математические науки
Шайхтдинова Гульназ Аликовна, бакалавр, студент
Башкирский государственный аграрный университет
Целью изучения математики является - повышение общего кругозора, культуры мышления, формирование научного мировоззрения.
Целью изучения математики является - повышение общего кругозора, культуры мышления, формирование научного мировоззрения.
Математика - наука о количественных отношениях и пространственных формах действительного мира. Академик Колмогоров А.Н. выделяет четыре периода развития математики: зарождение математики, элементарная математика, математика переменных величин, современная математика.
Начало периода элементарной математики относят к VI-V веку до нашей эры. Понимание математики, как самостоятельной науки возникло впервые в Древней Греции. В течение этого периода развивается арифметика - наука о числе.
В период развития элементарной математики появляется теория чисел, выросшая постепенно из арифметики. Создается алгебра, как буквенное исчисление.
В XVII веке запросы естествознания и техники привели к созданию методов, позволяющих математически изучать движение, процессы изменения величин, преобразование геометрических фигур.
С употребления переменных величин в аналитической геометрии и создание дифференциального и интегрального исчисления начинается период математики переменных величин. Великим открытиям XVII века является введенная Ньютоном и Лейбницем понятие «бесконечно малой величины», создание основ анализа бесконечно малых (математического анализа).
На первый план выдвигается понятие функции. Функция становится основным предметом изучения. Изучение функции приводит к основным понятиям математического анализа: пределу, производной, дифференциалу, интегралу.
К этому времени относятся и появление гениальной идеи Р. Декарта - метода координат. Создается аналитическая геометрия, которая позволяет изучать геометрические объекты методами алгебры и анализа. С другой стороны метод координат открыл возможность геометрической интерпретации алгебраических и аналитических фактов.
Дальнейшее развитие математики привело в начале ХIX века к постановке задачи изучения возможных типов количественных отношений и пространственных форм с достаточно общей точки зрения.
Связь математики и естествознания приобретает все более сложные формы. Возникают новые теории. Новые теории возникают не только в результате запросов естествознания и техники, но и в результате внутренней потребности математики. Замечательным примером такой теории является «воображаемая геометрия» Н. И. Лобачевского. Развитие математики в XIX и XX веках позволяет отнести ее к периоду современной математики. Развитие самой математики, «математизация» различных областей науки, проникновение математических методов во многие сферы практической деятельности, прогресс вычислительной техники привели к появлению новых математических дисциплин, например, исследование операций, теория игр, математическая экономика и другие.
Математика (греч. mathematike, от mathema - знание, наука) наука, в которой изучаются пространственные формы и количественные отношения.
Современное понятие математики - наука о математических структурах (множествах, между элементами которых определены некоторые отношения).
Современная математика имеет следующие основные разделы:
1. Элементарная математика: алгебра, геометрия и тригонометрия (на плоскости и сфере).
2. Аналитическая геометрия (на плоскости и в пространстве).
3. Функции и пределы. Дифференциальное и интегральное исчисление.
4. Векторный анализ. Системы криволинейных координат.
5. Функции комплексного переменного.
6. Преобразование Лапласа и другие интегральные преобразования.
7. Дифференциальные уравнения.
8. Максимумы и минимумы.
9. Математические модели. Абстрактная алгебра и абстрактные пространства.
10. Матрицы. Квадратичные и эрмитовы формы.
11. Линейные векторные пространства и линейные операторы. Матричное представление линейных преобразований.
12. Интегральные уравнения, краевые задачи и задачи о собственных значениях.
13. Тензорная алгебра и тензорный анализ.
14. Дифференциальная геометрия.
15. Теория вероятностей.
16. Теория случайных процессов.
17. Математическая статистика.
18. Численные методы и конечные разности.
Математики отличаются от "нематематиков" тем что, обсуждая научные проблемы или решая практические задачи, говорят между собой и пишут работы на особом "математическом языке" - языке специальных символов, формул. На математическом языке многие утверждения выглядят яснее и прозрачнее, чем на обычном.
Например, на обычном языке говорят: "От перемены мест слагаемых сумма не меняется" - так звучит переместительный закон сложения чисел.
Математик пишет (или говорит):
a + b = b + a
А выражение: "Путь S, пройденный телом со скоростью V за период времени от начала движения tн до конечного момента tк "
запишут так: S = V · (tк - tн)
Или такую фразу из физики: "Сила равна произведению массы на ускорение"
запишут: F = m · a
Он переводит высказанное утверждение на математический язык, в котором используются разные числа, буквы (переменные), знаки арифметических действий и иные символы. Все эти записи экономны, наглядны и удобны для применения.
Во всяком языке есть своя письменная и устная речь. Выше мы говорили о письменной речи в математике. Устная речь - это употребление специальных терминов или словосочетаний, например: "слагаемое", "произведение", "уравнение", "неравенство", "функция", "график функции", "координата точки", "система координат" и т.п., а также различные математические утверждения, выраженные словами: "Число а делится на 2 тогда и только тогда, когда оканчивается на 0 или четную цифру".
Рассмотрим математические структуры.
Алгебраические структуры. Примерами таких структур являются группы, кольца и поля. Основные характеристики алгебраической структуры: задание на некотором множестве А конечного числа операций с соответствующими свойствами, описываемых системой аксиом. В качестве элементов множества А могут выступать как математические объекты (числа, матрицы, перемещения, векторы), так и нематематические.
Структуры порядка характеризуются тем, что на рассматриваемом множестве задается отношение порядка (сравнение на числовых множествах), для которого выполняются следующие свойства: рефлексивность, симметричность, транзитивность.
Топологические структуры. Множество М обладает топологической структурой, если каждому его элементу тем или иным способом отнесено семейство подмножеств из М, называемых окрестностями этого элемента, причем эти окрестности должны удовлетворять определенным аксиомам (аксиомам топологических структур). С помощью топологических структур точно определяются такие понятия, как «окрестность», «предел», «непрерывность».
В математике изучаются математические модели объектов. Одна и та же математическая модель может описывать свойства далеких друг от друга реальных явлений. Так, одно и тоже дифференциальное уравнение может описывать процессы роста населения и распад радиоактивного вещества. Для математика важна не природа рассматриваемых объектов, а существующие между ними отношения. В математике используют два вида умозаключений: дедукция и индукция.
Индукция - метод исследования, в котором общий вывод строится не основе частных посылок. Дедукция - способ рассуждения, посредством которого от общих посылок следует заключение частного характера.
Математика играет важную роль в естественнонаучных, инженерно-технических и гуманитарных исследованиях. Причина проникновения математики в различные отрасли знаний заключается в том, что она предлагает весьма четкие модели для изучения окружающей действительности в отличие от менее общих и более расплывчатых моделей, предлагаемых другими науками. Без современной математики с ее развитым логическими и вычислительным аппаратом был бы невозможен прогресс в различных областях человеческой деятельности.
Математика является не только мощным средством решения прикладных задач и универсальным языком науки, но также и элементом общей культуры.
математичка знание алгебраический мировоззрение
Список литературы
1. Лубова, Т. Н. Многомерные статистические методы [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БГАУ, 2015. - 64 с.
2. Лубова, Т. Н. Теория вероятностей и математическая статистика [Электронный ресурс] : учебное пособие / Т. Н. Лубова ; М-во сел. хоз-ва РФ, Башкирский ГАУ. - Уфа : Изд-во БашГАУ, 2015. - 163 с.
3. Исламгулов, Д.Р. Применение корреляционного анализа в агрономии [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Уральский научный вестник. - 2016. - Т. 4. - № 3. - С. 142-147.
4. Лубова, Т.Н. Принципы статистического прогнозирования при разработке инновационной стратегии региона [Текст] / Т.Н. Лубова // Экономика, экология и общество России в 21-м столетии: Сборник научных трудов: 11-й Международной научно-практической конференции, 19-21 мая 2009 г. / Санкт-Петербургский государственный политехнический университет. - С.-Петербург, 2009. - С. 155-156.
5. Лубова, Т. Н. Многомерная классификация регионов Приволжского федерального округа по уровню финансовой безопасности [Текст] / Т. Н. Лубова // Конкурентоспособность региона в условиях экологических и демографических ограничений: Материалы межрегиональной научно-практической конференции. - Улан-Уде: Изд-во БНЦ СО РАН, 2009. - с. 149-159.
6. Лубова, Т. Н. Классификация регионов Российской Федерации методом кластерного анализа [Текст] / Т. Н. Лубова // Образование, наука, практика: инновационный аспект: Сб. материалов международной научно-практической конференции, посвященной памяти профессора А.Ф. Блинохватова. - Пенза: РИО ПГСХА, 2008. - С.379-381.
7. Исламгулов, Д. Р. Компетенция - основа реализации цели ФГОС [Текст] / Д. Р. Исламгулов, Т. Н. Лубова // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 133-137.
8. Лубова, Т. Н. Оценка качества образования в рамках компетентностного подхода [Текст] / Т. Н. Лубова, Д. Р. Исламгулов // Актуальные проблемы преподавания социально-гуманитарных, естественно - научных и технических дисциплин в условиях модернизации высшей школы: материалы международной научно-методической конференции, 4-5 апреля 2014 г. / Башкирский ГАУ, Факультет информационных технологий и управления. - Уфа, 2014. - С. 189-192.
9. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта - компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова// БЪДЕЩИТЕ ИЗСЛЕДОВАНИЯ - 2016: Материали за XII Международна научна практична конференция, 15-22 февруари 2016. - София: Бял ГРАД-БГ ООД, 2016. - Том 4 Педагогически науки. - C. 80-85.
10. Исламгулов, Д.Р. Компетентностный подход в обучении: оценка качества образования [Текст] / Д.Р. Исламгулов, Т.Н. Лубова, И.Р. Исламгулова // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 62-69.
11. Исламгулов, Д.Р. Модульно-рейтинговая система обучения и оценки знаний - особенности внедрения [Текст] / Д.Р. Исламгулов, Т.Н. Лубова // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 70-78.
12. Лубова, Т.Н. Новые образовательные стандарты: особенности реализации [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 79-84.
13. Лубова, Т.Н. Основа реализации федерального государственного образовательного стандарта - компетентностный подход [Текст] / Т.Н. Лубова, Д.Р. Исламгулов, И.Р. Исламгулова // Современный научный вестник. - 2015. - Т. 7. - № 1. - С. 85-93.
14. Лубова, Т.Н. Использование тестирования в организации самостоятельной работы обучающихся [Текст] / Т.Н. Лубова, Д.Р. Исламгулов // Современный научный вестник. - 2015. - Т. 12. - С. 44-48.
Размещено на Allbest.ru
Подобные документы
Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья [16,2 K], добавлен 05.01.2010Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат [25,9 K], добавлен 30.04.2011История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат [38,2 K], добавлен 09.10.2008Классические каноны в живописи, связанные с математикой: изображение человека, расположение предметов, соотношение мелких и крупных предметов. Роль математики в профессии юриста. Обоснование необходимости знаний математики для врачей и воспитателей.
презентация [2,3 M], добавлен 21.12.2014Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.
реферат [25,8 K], добавлен 08.02.2009Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.
реферат [32,6 K], добавлен 06.09.2006Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.
презентация [124,5 K], добавлен 17.05.2012Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа [347,2 K], добавлен 12.09.2009Характер давньогрецької математики та джерела. Характер давньогрецької математики та її джерела. Виділення математики в самостійну теоретичну науку. Формулювання теорем про площі і обсяги складних фігур і тіл. Досягнення олександрійських математиків.
курсовая работа [186,2 K], добавлен 22.11.2011Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.
презентация [2,2 M], добавлен 20.09.2015