Сведения разных форм представления многомерных сингулярных интегралов друг к другу
Проведение исследования многомерных сингулярных интегральных уравнений. Особенность разработки основных приближенных методов для вычисления многомерных интегралов. Характеристика главной связи между разными формами средств представления функций.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 06.06.2018 |
Размер файла | 497,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Андижанский сельскохозяйственный институт, Узбекистан
Сведения разных форм представления многомерных сингулярных интегралов друг к другу
Джуракулов Р.
Многие задачи механики, теория аналитических функций, математической физики и т.д. тесно связано с многомерными сингулярными интегральными уравнениями [1] Из чего следует необходимость разработки приближённых методы для вычисления многомерных сингулярных интегралов. Этим вопросом активно и плодотворно занимался Б.Г.Габдулхаев (см.напр. [2]И естественно интересен вопрос о том, какая существует связь между разными формами сингулярных интегралов таких как, например, интегралы с ядрами типа Коши, типа Гильберта и типа
где и - вектор функции, а некоторая матрица, если , то этот интеграл является сингулярным.
С этой целью в этой работе мы пытались изучить этот вопрос на примере следующего интеграла.
где
Если
то интеграл (1) примет вид:
И
В последних интегралах приведем замену
после чего имеем
Или
где - единичные окружности. Рассмотрим теперь величины
из подынтегральных выражений (2) и (3).
Они являются ограниченными величинами, то есть можно показать, что
Кроме того, если одним и тем же законом и , то (5) и (6) стремятся к одному и тому же пределу .
Аналогичные рассуждения имеют места и относительно следующих величин: сингулярный интегральный уравнение функция
Введя обозначения
из (4) имеем
Аналогичным путем получаем, что
Где
Таким же образом можно установить связь между интегралами вида (7) и (8) и сингулярными интегралами с ядром Гильберта.
Литература
1. Н.И.Мусхелишвили. Сингулярные интегральные уравнения. М., Физматгиз,1968.
2. Б.Г.Габдулхаев. Кубатурные формулы для многомерных сингулярных интегралов. Изв. Вузов, Математика, 1975, №4.
Размещено на Allbest.ru
Подобные документы
Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Обоснование итерационных методов решения уравнений в свертках, уравнений Винера-Хопфа, с парными ядрами, сингулярных интегральных, интегральных с одним и двумя ядрами. Рассмотрение алгоритмов решения. Анализ учебных программ по данной дисциплине.
дипломная работа [2,2 M], добавлен 27.06.2014Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Изучение способов нахождения пределов функций и их производных. Правило дифференцирования сложных функций. Исследование поведения функции на концах заданных промежутков. Вычисление площади фигуры при помощи интегралов. Решение дифференциальных уравнений.
контрольная работа [75,6 K], добавлен 23.10.2010Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.
курсовая работа [349,3 K], добавлен 12.10.2009Понятие и назначение интегралов, их классификация и разновидности. Вычисление интегралов от тригонометрических функций: методика, основные этапы, используемые инструменты. Интегралы, зависящие от параметра, их отличительные особенности и вычисление.
курсовая работа [1,1 M], добавлен 19.09.2011Основной вопрос теории сингулярных интегралов. Понятие сингулярного интеграла. Представление функции сингулярным интегралом в заданной точке. Приложения в теории рядов Фурье. Сингулярный интеграл Пуассона.
дипломная работа [209,4 K], добавлен 08.08.2007Изучение теории кратных интегралов. Исследование понятия "двойной и тройной интеграл". Применение кратных интегралов для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [469,0 K], добавлен 13.12.2012Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация [1,2 M], добавлен 15.01.2014Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.
курсовая работа [1,0 M], добавлен 11.03.2013