Двовимірні інтерполяційні многочлени та ланцюгові дроби
Аналіз подвійної різниці для функції двох змінних. Інтерполяційний многочлен у формі Ньютона для функції двох змінних та інтерполяційний многочлен Лагранжа у даному випадку. Двовимірні інтерполяційні ланцюгові дроби та їх обчислення в різних випадках.
Рубрика | Математика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 13.11.2017 |
Размер файла | 126,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сутність інтерполяційних поліномів. Оцінка похибок інтерполяційних формул, їх застосування. Програма обчислення наближених значень функції у випадку, коли функція задана таблично, використовуючи інтерполяційні формули для рівновіддалених вузлів.
курсовая работа [956,4 K], добавлен 29.04.2011Функція двох змінних, методика визначення її головних параметрів. Поняття екстремуму функцій двох змінних, необхідні та достатні умови її існування. Особливості визначення екстремуму функції за деяких умов, які обмежують область зміни аргументів.
курсовая работа [1,0 M], добавлен 22.10.2014Побудова дотичної площини та нормалі до поверхні. Геометричний зміст диференціала функції двох змінних. Поняття скалярного поля, зв'язок між градієнтом і похідною в даній точці. Формула Тейлора для функції двох змінних та її локальні екстремуми.
реферат [713,9 K], добавлен 14.05.2011Будування сіткової функції. Методи прямокутників і трапецій, підвищення їх точності. Інтерполяційний многочлен Лагранжа другого степеня. Формула Сімпсона для чисельного інтегрування. Похибка формули Сімпсона. Обчислення наближеного значення інтеграла.
презентация [99,6 K], добавлен 06.02.2014Суть функції багатьох змінних, її означення і символіки. Границя і неперервність функції багатьох змінних. Визначення відкритої та замкненої області. Множина точок площини, для яких задана формула має зміст, як область визначення. Функція двох змінних.
реферат [289,8 K], добавлен 01.05.2011Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.
курсовая работа [584,5 K], добавлен 18.07.2010Сутність фізичного та геометричного змісту похідної, особливості його використовування у математичних задачах. Означення диференціалу, формула його обчислення. Екстремуми функцій двох змінних. Правила знаходження найбільшого і найменшого значення функції.
презентация [262,6 K], добавлен 20.05.2015Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.
контрольная работа [75,6 K], добавлен 06.02.2014Загальні формули прямокутників. Похибка методу прямокутників. Площа криволінійної трапеції. Формула парабол (Сімпсона). Інтерполяційний багаточлен Лагранжа. Формула трьох восьмих. Абсолютна похибка обчислення. Наближення підінтегральної функції.
лабораторная работа [298,1 K], добавлен 26.03.2011Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
реферат [278,8 K], добавлен 02.05.2011Определение абсолютной и относительной погрешностей приближенных чисел. Оценка погрешностей результата. Интерполирование и экстраполирование данных, интерполяционный многочлен Лагранжа и Ньютона, их основные характеристики и сравнительное описание.
лабораторная работа [74,8 K], добавлен 06.08.2013Построить интерполяционный многочлен Ньютона. Начертить график и отметить на нем узлы интерполяции. Построить интерполяционный многочлен Лагранжа. Выполнить интерполяцию сплайнами третьей степени.
лабораторная работа [70,8 K], добавлен 06.02.2004Вычислительные методы линейной алгебры. Интерполяция функций. Интерполяционный многочлен Ньютона. Узлы интерполяции. Интерполяционный многочлен Лагранжа. Интерполяция сплайнами. Коэффициенты кубических сплайнов.
лабораторная работа [70,5 K], добавлен 06.02.2004Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа [4,8 M], добавлен 23.05.2013Поняття диференційованості функції в даній точці, основні формули. Диференціал функції однієї змінної, його застосування. Основні означення, які відносяться до функції кількох змінних. Похідна алгебраїчної суми скінченного числа диференційованих функцій.
реферат [101,8 K], добавлен 02.11.2015Коротка біографія видатного математика Б. Тейлора. Тейлорова формула із залишковим членом у формі Пеано та у Лагранжовій формі. Розвинення деяких елементарних функцій за формулою Тейлора. Формула Тейлора для многочлена та для функції однієї змінної.
курсовая работа [547,0 K], добавлен 20.05.2015Первая дробь, с которой познакомились люди в Египте. Числитель и знаменатель дроби. Правильная и неправильная дробь. Смешанное число. Приведение к общему знаменателю. Неполное частное. Целая и дробная часть. Обратные дроби. Умножение и деление дробей.
презентация [48,9 K], добавлен 11.10.2011Теоретико-методологические основы формирования математического понятия дроби на уроках математики. Процесс формирования математических понятий и методика их введения. Практическое исследование введения и формирования математического понятия дроби.
дипломная работа [161,3 K], добавлен 23.02.2009Тождества, используемые для системы Жигалкина. Многочлен Жигалкина функции одной, двух и трех переменных. Содержание теоремы. Практический пример преобразования многочлена с помощью метода цепочки и неопределенных коэффициентов. Закон полного поглощения.
контрольная работа [95,5 K], добавлен 06.08.2013