Элементарная теория вероятностей
Статистическое определение вероятности случайного события и меры статистической закономерности появления события. Применение графической диаграммы Эйлера из теории множеств. Определение свойства относительной частоты и пространства элементарных событий.
Рубрика | Математика |
Вид | лекция |
Язык | русский |
Дата добавления | 26.09.2017 |
Размер файла | 118,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат [1,4 M], добавлен 18.02.2014Теория вероятностей — раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними. Методы решения задач по теории вероятности, определение математического ожидания и дисперсии.
контрольная работа [157,5 K], добавлен 04.02.2012Теория вероятности как математическая наука, изучающая закономерность в массовых однородных случаях, явлениях и процессах, предмет, основные понятия и элементарные события. Определение вероятности события. Анализ основных теорем теории вероятностей.
шпаргалка [777,8 K], добавлен 24.12.2010Изучение закономерностей массовых случайных явлений. Степень взаимосвязи теории вероятностей и статистики. Невозможные, возможные и достоверные события. Статистическое, классическое, геометрическое, аксиоматическое определение вероятности. Формула Бейеса.
реферат [114,7 K], добавлен 08.05.2011Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
контрольная работа [480,0 K], добавлен 29.06.2010Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.
курсовая работа [328,1 K], добавлен 18.11.2011Возникновение теории вероятностей как науки, вклад зарубежных ученых и Петербургской математической школы в ее развитие. Понятие статистической вероятности события, вычисление наивероятнейшего числа появлений события. Сущность локальной теоремы Лапласа.
презентация [1,5 M], добавлен 19.07.2015Общее понятие и характеристика простейшего пространства элементарных исходов. Способы вычисления вероятности события. Классическая вероятностная модель, ее главные свойства и доказательства. Основные аксиомы теории вероятности, примеры решения задач.
реферат [42,6 K], добавлен 24.04.2009Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.
реферат [402,7 K], добавлен 03.12.2007Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача [82,0 K], добавлен 12.02.2011Общее представление о событии. Понятие действительного, случайного и невозможного события. Даниил Бернулли, Христиан Гюйгенс, Пьер-Симон Лаплас, Блез Паскаль, Пьер Ферма и их вклад в развитие теории вероятностей. Формирование вероятностного мышления.
презентация [1,6 M], добавлен 03.05.2011Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.
контрольная работа [114,3 K], добавлен 11.02.2014Определение числа всех равновероятных исходов испытания. Правило умножения вероятностей независимых событий, их полная система. Формула полной вероятности события. Построение ряда распределения случайной величины, ее математическое ожидание и дисперсия.
контрольная работа [106,1 K], добавлен 23.06.2009Теория вероятности как наука убеждения, что в основе массовых случайных событий лежат детерминированные закономерности. Математические доказательства теории. Аксиоматика теории вероятности: определения, вероятность пространства, условная вероятность.
лекция [287,5 K], добавлен 02.04.2008Пространство элементарных событий. Совместные и несовместные события. Плотность распределения вероятностей системы двух случайных величин. Эмпирическая функция распределения. Числовые характеристики случайной функции. Условие независимости двух событий.
контрольная работа [30,0 K], добавлен 15.06.2012Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.
практическая работа [55,0 K], добавлен 23.08.2015Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.
задача [104,1 K], добавлен 14.01.2011Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация [77,5 K], добавлен 01.11.2013Применение формул и законов теории вероятности при решении задач. Формула Байеса, позволяющая определить вероятность какого-либо события при условии, что произошло другое статистически взаимозависимое с ним событие. Центральная предельная теорема.
курсовая работа [460,7 K], добавлен 04.11.2015