Первообразная функция. Неопределенный интеграл. Основные методы интегрирования
Определение свойств неопределенного интеграла. Рассмотрение таблицы основных неопределенных интегралов. Характеристика методов интегрирования тригонометрических и гиперболических функций: замены переменной, подстановки и интегрирования по частям.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 26.09.2017 |
Размер файла | 1,9 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Особенности неопределенного интеграла. Методы интегрирования (Замена переменной. Интегрирование по частям). Интегрирование рациональных выражений. Интегрирование рациональных дробей. Метод Остроградского. Интегрирование тригонометрических функций.
лабораторная работа [1,7 M], добавлен 05.07.2010Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация [117,8 K], добавлен 18.09.2013Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.
шпаргалка [42,3 K], добавлен 21.08.2009Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.
презентация [525,7 K], добавлен 11.09.2011Первообразная и неопределенный интеграл. Таблица интегралов. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой или способом подстановки. Интегрирование по частям. Рациональные дроби. Простейшие рациональные дроби.
реферат [128,7 K], добавлен 16.01.2006Понятие и характеристика неопределенного интеграла, его свойства. Методы интегрирования функций: разложение, замена переменной, по частям. Задача Коши, ее содержание. Дисперсия случайной величины. Решения для дифференциальных уравнений n-порядка.
лекция [187,9 K], добавлен 17.12.2010Интегралы, у которых один или оба предела интегрирования бесконечны, и у которых функция не ограничена на отрезке интегрирования. Понятие несобственных интегралов с бесконечными пределами интегрирования. Геометрический смысл несобственного интеграла.
презентация [104,1 K], добавлен 18.09.2013Первообразная функции и неопределенный интеграл. Геометрический смысл производной. Совокупность всех первообразных для функции f(x) на промежутке Х. Понятие подынтегрального выражения. Проверка правильности результата интегрирования, примеры задач.
презентация [198,4 K], добавлен 18.09.2013Вычисление интеграла, выполнение интегрирования по частям. Применение метода неопределенных коэффициентов, приведение уравнения к системе. Введение вспомогательных функций в процессе поиска решения уравнения и вычисления интеграла, разделение переменных.
контрольная работа [617,2 K], добавлен 08.07.2011Первообразный и неопределенный интеграл. Некоторые свойства неопределенного интеграла. Интегрирование методом замены переменой, способом подстановки, по частям. Интегрирование рациональных дробей. Простейшие рациональные дроби и их интегрирование.
курсовая работа [187,8 K], добавлен 26.09.2014