Схема Бернулли и предельные теоремы
Главная особенность исследования теоремы Бернулли. Построение графика распределения вероятностей. Основной анализ определения полиномиальной схемы. Характеристика гипергеометрических испытаний. Изучение интегральной приближенной формулы Муавра-Лапласа.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 25.09.2017 |
Размер файла | 223,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Закон распределения случайной величины дискретного типа (принимающей отдельные числовые значения). Предельные теоремы схемы Бернулли. Вычисление вероятности появления события по локальной теореме Муавра-Лапласа. Интегральная формула данной теоремы.
презентация [611,2 K], добавлен 17.08.2015Случайные события, их классификация. Свойство статистической устойчивости относительной частоты события. Предельные теоремы в схеме Бернулли. Аксиоматическое и геометрическое определение вероятности. Локальная и интегральная теоремы Муавра-Лапласа.
реферат [1,4 M], добавлен 18.02.2014Правила применения уравнения Бернулли для определения возможности наступления события. Использование формул Муавра-Лапласа и Пуассона при неограниченном возрастании числа испытаний. Примеры решения задач с помощью теоремы Бернулли о частоте вероятности.
курсовая работа [265,6 K], добавлен 21.01.2011Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.
практическая работа [55,0 K], добавлен 23.08.2015Сущность вероятностной задачи-схемы независимых испытаний швейцарского профессора математики Я. Бернулли. Пример решения задачи по формуле Бернулли. Применение методов теории вероятностей в различных отраслях естествознания, техники и прикладных науках.
презентация [301,3 K], добавлен 10.03.2011Вероятность события. Теоремы сложения и умножения событий. Теорема полной вероятности события. Повторные независимые испытания. Формула Бернулли, формула Пуассона, формула Муавра-Лапласа. Закон распределения вероятностей случайных дискретных величин.
контрольная работа [55,2 K], добавлен 19.12.2013Схема полного исследования бесконечно больших и малых функций и построение их графика. Арифметические теоремы о пределе функции. Применение формулы Тейлора, Маклорена, Коши, Лопиталя-Бернулли. Теорема о производной вектор-функции постоянной длины.
курс лекций [1,3 M], добавлен 14.12.2012Преимущество использования формулы Бернулли, ее место в теории вероятностей и применение в независимых испытаниях. Исторический очерк жизни и деятельности швейцарского математика Якоба Бернулли, его достижения в области дифференциального исчисления.
презентация [96,2 K], добавлен 11.12.2012Проверка выполнимости теоремы Бернулли на примере вероятности прохождения тока по цепи. Моделирование дискретной случайной величины, имеющей закон распределения Пуассона. Подтверждение гипотезы данного закона распределения с помощью критерия Колмогорова.
курсовая работа [134,2 K], добавлен 31.05.2010Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Примеры решения задач с игральными костями, выигрыша в лотерею, вероятности брака и др. Биноминальный закон распределения: решение математического ожидания и дисперсии.
контрольная работа [74,4 K], добавлен 31.05.2010