Основы статистики

Знакомство с этапами построения графика эмпирической функции распределения и полигона относительных частот. Способы выявления наличия корреляционной связи между объемами продукции и уровнем механизации труда. Характеристика графиков первичного ряда.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 16.09.2017
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Цель контрольной работы - закрепление и проверка знаний, полученных студентами заочной формы обучения в процессе самостоятельного изучения учебного материала, а так же выявление их умения применять на практике методы решения задач статистики.

Каждый студент заочной формы обучения должен решить все задачи своего варианта.

При выполнении контрольной работы необходимо руководствоваться следующими требованиями:

1. Вариант контрольной работы выбирать по последней цифре номера зачетной книжки (или по последней цифре порядкового номера Ф.И.О. студента в списке журнала группы, если он взят за основу при определении варианта); цифра "0" означает вариант 10.

2. В начале работы должен быть указан номер варианта задания;

3. Перед решением задачи должно быть приведено ее условие;

4. Решение задач следует сопровождать необходимыми формулами, развернутыми расчетами и краткими пояснениями;

5. В конце работы должна стоять подпись студента с указанием даты ее выполнения;

6. На лицевой стороне контрольной работы необходимо указать следующую информацию: ФИО студента, номер группы с указанием формы обучения, дисциплина и номер зачетной книжки (или, соответственно, порядковый номер Ф.И.О. студента в списке журнала группы).

Задача 1

Из генеральной совокупности , распределенной по нормальному закону, извлечена выборка. Требуется:

1. Составить вариационный, статистический и выборочный ряды распределения; найти размах выборки;

По полученному распределению выборки:

2. Построить полигон относительных частот;

3. Построить график эмпирической функции распределения;

4. Вычислить выборочную среднюю, выборочную дисперсию, выборочное исправленное среднее квадратическое отклонение, моду и медиану;

5. С надежностью найти доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения изучаемого признака генеральной совокупности.

Таблица 1

Задача 2

Для выборки, извлеченной из генеральной совокупности и представленной интервальным рядом (в первой строке указаны интервалы значений исследуемого количественного признака генеральной совокупности; во второй - частоты , т.е. количество элементов выборки, значения признака которых принадлежат указанному интервалу). Требуется:

1) Построить полигон относительных накопленных частот (кумулятивную кривую);

2) Построить гистограмму частот и гистограмму относительных частот;

3) Найти выборочную среднюю, выборочную дисперсию, моду и медиану;

4) Проверить на уровне значимости гипотезу о нормальном распределении признака генеральной совокупности по критерию согласия Пирсона;

5) В случае согласованности с нормальным распределением найти с надежностью доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения признака генеральной совокупности.

Таблица 2

Замечание: При отыскании выборочной средней и выборочной дисперсии в задачах 2.5. и 2.6. для упрощения счета рекомендуется переходить к условным вариантам.

Задача 3

Проведите сравнительный анализ результатов педагогического эксперимента в контрольных и экспериментальных группах, используя критерий однородности Пирсона.

Уровень значимости положите

Таблица 3

Задача 4

Исследуется зависимость коэффициента усвоения знаний, выраженного в процентах (%) от уровня посещаемости занятий (%) в группе из четырнадцати учащихся (- порядковый номер учащегося). Статистические данные приведены в таблице.

Требуется:

1) Найти оценки параметров линейной регрессии на . Построить диаграмму рассеяния и нанести прямую регрессии на диаграмму рассеяния.

2) На уровне значимости проверить гипотезу о согласии линейной регрессии с результатами наблюдений.

3) С надежностью найти доверительные интервалы для параметров линейной регрессии.

Таблица 4

Задача 5

Предположим, что в педагогическом эксперименте участвовали три группы студентов по 10 человек в каждой. В группах применили различные методы обучения: в первой - традиционный , во второй - основанный на компьютерных технологиях , в третьей - метод, широко использующий задания для самостоятельной работы . Знания оценивались по десятибалльной системе.

Требуется обработать полученные данные об экзаменах и сделать заключение о том, значимо ли влияние метода преподавания, приняв за уровень значимости .

Результаты экзаменов заданы таблицей, - уровень фактора - оценка -го учащегося обучающегося по методике .

Таблица 5

Задача 6

По промышленным предприятиям города имеются следующие данные за отчетный год:

Таблица 6

Предп.

Объем продукции, млн.руб.

Среднегодовая стоимость

Основных средств, млн.руб.

Среднесписочное число работников, чел.

Прибыль, млн.руб.

1

197,7

10,0

900

13,5

2

592,0

22,8

1500

136,2

3

465,5

18,4

1412

97,6

4

296,2

12,6

1200

44,4

5

584,1

22,0

1485

146,0

6

480,0

19,0

1420

110,4

7

578,5

21,6

1390

138,7

8

204,7

9,4

817

30,6

9

466,8

19,4

1375

111,8

10

292,2

13,6

1200

49,6

11

423,1

17,6

1365

105,8

12

192,6

8,8

850

30,7

13

360,5

14,0

1290

64,8

14

208,3

10,2

900

33,3

Требуется выполнить группировку предприятий по объему выпущенной продукции, приняв следующие интервалы:

1) до 200 млн.руб. 2) от 200 до 400 млн.руб.; 3) от 400 до 600 млн.руб.

По каждой группе и в целом по всем предприятиям определить: число предприятий, число продукции, среднесписочное число работников, среднюю выработку продукции на одного работника. Результаты группировки представить в виде статистической таблицы.

Решить задачу 6.1., приняв следующие интервалы группировки:

1) до 250 млн.руб. 2) от 250 до 500 млн.руб.; 3) от 500 млн.руб. и более

Решить задачу 6.1., приняв следующие интервалы группировки:

1) до 300 млн.руб. 2) от 300 до 500 млн.руб.; 3) более 500 млн.руб.

Требуется произвести группировку предприятий по стоимости основных средств, приняв следующие интервалы:

1) до 12 млн.руб. 2) от 12 до 18 млн.руб.; 3) от 18 млн.руб. и выше

По каждой группе и в целом по всем предприятиям определить: число предприятий, среднегодовую стоимость основных средств. Результаты представить в виде статистической таблицы.

Решить задачу 6.4., приняв следующие интервалы группировки:

1) менее 10 млн.руб. 2) от 10 до 20 млн.руб.; 3) более 20 млн.руб.

Решить задачу 6.4., приняв следующие интервалы группировки:

1) менее 14 млн.руб. 2) от 14 до 19 млн.руб.; 3) от 19 млн.руб. и более

Требуется выполнить группировку предприятий по численности работников, приняв следующие интервалы:

1) до 1000 чел. 2) от 1000 до 1300 чел.; 3) от 1300 чел. и более

По каждой группе и в целом по всем предприятиям определить: число предприятий, объем продукции, среднесписочное число работников, среднегодовую стоимость основных средств, а также среднюю выработку продукции на одного работника. Результаты группировки представить в виде статистической таблицы.

Решить задачу 6.7., приняв следующие интервалы группировки:

1) не более 900 чел. 2) от 900 до 1400 чел.; 3) более 1400 чел.

Требуется произвести группировку предприятий по величине прибыли, приняв следующие интервалы:

1) до 50 млн.руб. 2) от 50 до 100 млн.руб.; 3) от 100 до 150 млн.руб.

По каждой группе и в целом по всем предприятиям определить число предприятий, объем продукции, среднегодовую стоимость основных средств, среднесписочное число работников, а также размер среднегодовой стоимости основных средств в расчете на одного работника. Результаты группировки представить в виде статистической таблицы.

Решить задачу 6.9., приняв следующие интервалы группировки:

1) до 70 млн.руб. 2) от 70 до 110 млн.руб.; 3) свыше 110 млн.руб.

Задача 7

По каждому из трех предприятий фирмы (-порядковый номер предприятия) имеются соответствующие данные о фактическом объеме реализованной в 2000 г. продукции (, млн.руб.), о плановом задании по росту реализованной продукции на 2001г. (,%), а также о фактическом объеме реализованной в 2001г. продукции (, млн.руб.). статистические данные приведены в таблице.

Требуется определить в целом по фирме:

1) размер планового задания по росту объема реализованной продукции в 2001г.;

2) процент выполнения плана по объему реализованной продукции в 2001г.;

3)показатель динамики реализованной продукции.

Таблица 7

Задача 8

По каждой из трех основных рабочих профессий цеха (-порядковый номер профессии: 1-токари; 2-фрезеровщики; 3-слесари) имеются соответствующие данные о числе рабочих профессии (, чел.), о средней заработной плате (, руб.), а также о внутригрупповой дисперсии заработной платы (, руб.2). Статистические данные за месяц приведены в таблице.

Требуется:

1) определить общую дисперсию заработной платы рабочих цеха;

2) оценить однородность совокупности рабочих цеха по уровню месячной заработной платы;

3) определить, на сколько процентов дисперсия в размере заработной платы обусловлена различиями в профессии рабочих и влиянием других причин.

Таблица 8

Задача 9

По 14-ти предприятиям городского хозяйства (-порядковый номер предприятия) имеются соответствующие данные об объеме продукции (услуг) за месяц (млн.руб.) и уровне механизации труда (,%). Статистические данные приведены в таблице.

Для выявления наличия корреляционный связи между объемам продукции и уровнем механизации труда требуется:

1) построить аналитическую таблицу и дать графическое изображение линии связи.

2) Измерить тесноту связи между признаками с помощью коэффициента корреляции рангов; проверить его достоверность.

Таблица 9

Задача 10

Динамика удельного расхода условного топлива на производство теплоэнергии (, кг/Гкал) на ТЭЦ по городам представлена в таблице.

Требуется:

1) произвести сглаживание ряда методом трехлетней скользящей средней;

2) выровнять ряд по прямой;

3) методом экстраполяции определить прогноз экономического показателя на 2002 и 2003 г.г.;

4) начертить графики первичного и выроненного рядов.

Таблица 10

Методические указания к выполнению контрольной работы.

Решение типовых задач.

Задача 11

Из генеральной совокупности , распределенной по нормальному закону, извлечена выборка. Требуется:

1. Составить вариационный, статистический и выборочный ряды распределения; найти размах выборки;

По полученному распределению выборки:

2. Построить полигон относительных частот;

3. Построить график эмпирической функции распределения;

4. Вычислить выборочную среднюю, выборочную дисперсию, выборочное исправленное среднее квадратическое отклонение, моду и медиану;

5. С надежностью найти доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения изучаемого признака генеральной совокупности.

Таблица 11

Составим вариационный ряд. Напомним, что вариационным рядом называется последовательность наблюдаемых значений признака , расположенных в неубывающем порядке ,,…,, где …. Следовательно, в нашей задаче вариационный ряд запишется так:

Таблица 12

Составим статистический ряд распределения данной нам выборки

Таблица 13

- варианты, - частоты.

Найдем объем выборки

.

Относительная частота вычисляется по формуле .

Запишем выборочный ряд распределения

Таблица 14

.

Размах выборки , т.е. в нашем случае .

Рис.1

Построим полигон относительных частот

Вычислим выборочную среднюю

= =()==5,56.

Построим график эмпирической функции распределения где ( число вариант, меньших, чем значение аргумента ).

Рис.2

Вычислим выборочную дисперсию, где в нашем случае

=()==31,012

.

Найдем выборочное среднее квадратическое отклонение

Вычислим "исправленную" дисперсию , которая выражается формулой

(в нашем случае )

и "исправленное" среднее квадратическое отклонение

.

Модой называется варианта с наибольшей частотой, т.е. в нашей задаче . Медиана - варианта, которая делит вариационный ряд на две части, равные по числу вариант, т.е. в нашей задаче .

Найдем с надежностью =0,95 доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения изучаемого признака генеральной совокупности.

Так как по условию задачи генеральная совокупность x распределена по нормальному закону и объем выборки равен n=40, то искомый доверительный интервал для оценки математического ожидания имеет вид

,

где - среднее квадратическое отклонение, а величина t определяется по таблице значений функции Лапласа из равенства .

Следовательно, в нашем случае последнее равенство принимает вид . Из этого равенства по таблице значений интегральной функции Лапласа находим значение t=1,96. Величина была найдена ранее: и .

Вычислим . .

Учитывая, что , доверительный интервал для оценки математического ожидания запишется или, окончательно, .

Доверительный интервал для среднего квадратического отклонения нормально распределенной случайной величины находится по формуле , где s - "исправленное" среднее квадратическое отклонение, а находится по формуле , где величина q определяется по специальной таблице значений функции .

q=q(0,95;40)=0,24; =sq=0,3210,24=0,077. Следовательно, или окончательно .

На этом решение задачи 1 закончено.

Задача 12

Для выборки, извлеченной из генеральной совокупности и представленной интервальным рядом (в первой строке указаны интервалы значений исследуемого количественного признака X генеральной совокупности; во второй - частоты , т.е. количество элементов выборки, значения признака которых принадлежат указанному интервалу), требуется:

1) Построить полигон относительных накопленных частот (кумулятивную кривую);

2) Построить гистограмму частот и гистограмму относительных частот;

3) Найти выборочную среднюю, выборочную дисперсию, моду и медиану;

4) Проверить на уровне значимости гипотезу о нормальном распределении признака генеральной совокупности по критерию согласия Пирсона;

5) В случае согласованности с нормальным распределением найти с надежностью доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения признака генеральной совокупности.

Таблица 15

2.0.

.

В нашем случае n=2750.Тогда на основе данной таблицы построим интервальный статистический и интервальный выборочный ряды распределения, сведенные в одну таблицу.

Таблица 16

Построим полигон относительных накопленных частот (кумулятивную кривую);

Рис.3

Построим гистограмму частот.

В нашем случае исследуемый признак X может принимать значения на отрезке [3;17]. Интервальная группировка выполнена таким образом, что длина каждого интервала равна h=2. Площадь прямоугольника, построенного на i-ом интервале, должна равняться . Это значит, что высота i-го прямоугольника будет .

Рис.4

На остальных интервалах прямоугольники строятся аналогично.

Если высоту i-го прямоугольника определим как , то получим гистограмму относительных частот, которую можно рассматривать как аналог дифференциальной функции распределения в теории вероятностей.

Для того, чтобы найти выборочную среднюю, воспользуемся формулой

, где k - количество интервалов, n - объем выборки.

.

Для вычисления выборочной дисперсии воспользуемся формулой . В случае интервальной группировки находится по формуле

=.

Теперь можно окончательно вычислить выборочную дисперсию

.

Найдем выборочное среднее квадратическое отклонение

.

Отыщем выборочный коэффициент вариации

.

Найденное значение выборочного коэффициента вариации дает наглядное представление о степени относительного рассеяния исследуемого признака.

Отыщем значения "исправленной" дисперсии и "исправленного" среднего квадратического отклонения , .

Для отыскания моды в случае интервальной группировки используем формулу , где - левая граница интервала, имеющего наибольшую интервальную частоту, h - шаг (длина интервала группировки), , R - размах выборки, k - количество интервалов, - наибольшая интервальная частота, - интервальная частота интервала, расположенного слева от интервала с наибольшей интервальной частотой, - интервальная частота интервала, расположенного справа от интервала с наибольшей интервальной частотой.

В нашем случае .

Значение медианы для случая интервальной группировки отыщем по формуле , где - левая граница интервала, содержащего медиану, n - объем выборки, h - шаг, - интервальная частота интервала, содержащего медиану, - интервальные частоты всех интервалов, расположенных слева от интервала, содержащего медиану.

Найдем значение медианы для нашей конкретной задачи .

Далее начнем суммировать интервальные частоты слева направо до тех пор пока сумма интервальных частот не превзойдет .Номер последней прибавленной частоты будет совпадать с номером интервала, содержащего медиану распределения: 10+70+450+970=1500>1375. Следовательно, =9, .

Проверим на уровне значимости =0,05 гипотезу о нормальном распределении признака x генеральной совокупности по критерию согласия Пирсона.

Для нашей задачи все условия применимости метода Пирсона выполняются: , для любого интервала .

Проверка гипотезы нормальности по критерию Пирсона основана на сравнении эмпирического и гипотетического распределений, точнее, на сравнении эмпирических и гипотетических интервальных частот. Мера близости между ними оценивается статистикой Пирсона:

, где - интервальные (эмпирические) частоты, - интервальные теоретические частоты, - теоретические вероятности попадания переменной x в i-ый интервал группировки, , - левая граница i-го интервала, - правая граница i-го интервала.

При этом теоретические вероятности рассчитываются в предположении нормальности распределения случайной величины x по формуле:

, где и функция есть плотность стандартного нормального распределения, таблица значений которой приведена в приложении 2.

Вычисление наблюдаемого значения статистики Пирсона организуем в форме расчетной таблицы. Для заполнения таблицы нам понадобятся величины , , .

Таблица 17

Следовательно, . Заданный уровень значимости , количество интервалов группировки , и потому p=1-=0,95 и число степеней свободы k=m-3=4.

Теперь по таблице критических точек распределения отыщем значение .

Сравним значения и . Имеем 6,735<9,5 , следовательно, <. Поэтому гипотезу о нормальном распределении признака x принимаем. В этом случае необходимо найти с надежностью =0,95 доверительные интервалы для оценки математического ожидания и среднего квадратического отклонения признака x генеральной совокупности. Пример нахождения доверительных интервалов разобран при решении задачи 1 (пятый вопрос).

Таким образом, решение задачи 2 полностью разобрано.

Задача 13

Проведите сравнительный анализ результатов педагогического эксперимента в контрольных и экспериментальных группах, используя критерий однородности Пирсона.

, где и .

Уровень значимости положите

Таблица 18

Проведем сравнительный анализ результатов педагогического эксперимента в контрольных и экспериментальных группах, используя критерий однородности Пирсона:

, где 2, 3, 4, 5 - вариационный ряд (оценки, выставляемые по результатам проведения контрольных работ), - частота появления i-ой варианты в экспериментальной группе, - частота появления i-ой варианты в контрольной группе, - объем выборки в экспериментальной группе, - объем выборки в контрольной группе, m=4 - количество различных значений варианты (количество интервалов группировки), k=m-1=3 - количество степеней свободы.

Найдем и . =27+25+28+9=89, =9+5+18+10=42.

Теперь вычислим .

==8,6.

По таблице критических точек распределения , приведенной в приложении 3, для числа степеней свободы k=3 и уровня значимости =0,05 находим значение =7,81.

Так как > (8,6>7,81), то согласно правилу принятия решения, делаем вывод, что существуют достоверные различия между результатами проведения контрольных работ в экспериментальной и контрольной группах на уровне надежности =1-=1-0,05=0,95.

На этом решение задачи 3 закончено. Приведенный пример с небольшими изменениями взят из работы [7].

Задача 14

Исследуется зависимость коэффициента усвоения знаний, выраженного в процентах (%) от уровня посещаемости занятий (%) в группе из четырнадцати учащихся (- порядковый номер учащегося). Статистические данные приведены в таблице.

Требуется:

1) Найти оценки параметров линейной регрессии на . Построить диаграмму рассеяния и нанести прямую регрессии на диаграмму рассеяния.

2) На уровне значимости проверить гипотезу о согласии линейной регрессии с результатами наблюдений.

3) С надежностью найти доверительные интервалы для параметров линейной регрессии.

Таблица 19

Найдем точечные статистические оценки и параметров и линейной регрессии Y на X: .

Для уравнения прямой регрессии по статистическим данным таблицы 4.0 найдем оценки и ее параметров методом наименьших квадратов. Применим известные формулы

, где , ;

Вычисления организуем в форме следующей расчетной таблицы:

Таблица 20

i

1

53

36

1908

2809

1296

2

40

30

1200

1600

900

3

46

32

1472

2116

1024

4

39

29

1131

1521

841

5

35

27

945

1225

729

6

29

23

667

841

529

7

75

47

3525

5625

2209

8

31

19

589

961

361

9

68

44

2992

4624

1936

10

66

42

2772

4356

1764

11

60

40

2400

3600

1600

12

54

39

2106

2916

1521

13

55

33

1815

3025

1089

14

59

37

2183

3481

1369

710

478

25705

38700

17168

50,714

34,143

1836,071

2764,286

1226,286

Таким образом, , , , , .

Далее вычисляем ковариации

;

;

;

и по указанным выше формулам находим

; .

В результате получаем уравнение прямой регрессии

.

Проверим согласованность выбранной линейной регрессии с результатами наблюдений. Для этого решим следующую задачу проверки статистической гипотезы.

На заданном уровне значимости выдвигается гипотеза об отсутствии линейной статистической связи. Для проверки выдвинутой гипотезы используется коэффициент детерминации и применяется статистика Фишера F.

В случае парной линейной регрессии коэффициент детерминации равен квадрату выборочного коэффициента корреляции Пирсона, т.е.

.

Статистика F выражается формулой и при условии справедливости гипотезы имеет классическое распределение Фишера с и степенями свободы.

В соответствии с приведенными формулами вычисляем коэффициент детерминации и наблюдаемое значение статистики Фишера:

,

.

Критическое значение статистики Фишера находим по таблице квантилей распределения Фишера, исходя из равенства , где p=1- (порядок квантили), и . В данном случае .

Сравниваем между собой наблюдаемое и критическое значения статистики Фишера. Так как , то выдвинутая гипотеза решительно отвергается, что свидетельствует о согласии линейной регрессивной связи с результатами наблюдений.

Так как линейная регрессия согласуется со статистическими данными, найдем (с надежностью =0,95 ) доверительные интервалы для параметров и линейной регрессии. Для нахождения доверительных интервалов применим известные формулы:

,

где , - квантиль распределения Стьюдента порядка с k=n-2 степенями свободы, ;

, где .

В данном случае =,

;

;

=.

Применив приведенные выше формулы для доверительных интервалов, окончательно получим

,

.

Задача 15

Предположим, что в педагогическом эксперименте участвовали три группы студентов по 10 человек в каждой. В группах применили различные методы обучения: в первой - традиционный , во второй - основанный на компьютерных технологиях , в третьей - метод, широко использующий задания для самостоятельной работы . Знания оценивались по десятибалльной системе.

Требуется обработать полученные данные об экзаменах и сделать заключение о том, значимо ли влияние метода преподавания, приняв за уровень значимости .

Результаты экзаменов заданы таблицей, - уровень фактора - оценка -го учащегося обучающегося по методике .

Таблица 21

Поместим в таблице экзаменационные оценки (), их отклонения от общей средней () и квадраты этих отклонений . Уровни фактора означают: - традиционный метод, - применение компьютерной технологии, - увеличение доли самостоятельной работы.

Таблица 22

1 Номер испытания (порядковый номер студента группы).

2 Групповая средняя (средний балл группы).

Общая средняя равна

.

; .

.

В нашем примере p=3 (p - количество факторов), q=10 (q - количество студентов), поэтому для степеней свободы получаются следующие значения: pq-1=29, p-1=2, p(q-1)=27.

Находим выборочные дисперсии: ; ; .

Примем в качестве нулевой гипотезу о том, что выявленное различие групповых средних (средних баллов) случайно, т.е. при уровне значимости =0,05 средние баллы совпадают.

Для проверки этой гипотезы следует воспользоваться F-критерием Фишера-Снедекора. Вычисляется .

По таблицам находится критическая точка . Здесь - уровень значимости, - число степеней свободы для дисперсии (в числитель формулы вписывается большая из дисперсий), - число степеней свободы для меньшей дисперсии . В случае нулевая гипотеза принимается, в случае она отвергается.

В примере .

Таким образом, нулевая гипотеза отвергается, и следует считать, что средние баллы групп различаются "значимо". В частности, повышение качества знаний под воздействием уровня фактора F нельзя считать случайным.

Задача 16

Группировка статистических данных.

По промышленным предприятиям города имеются следующие данные за отчетный год:

Таблица 23

Объем продукции, млн. руб.

Среднегодовая стоимость основных средств, млн. руб.

Среднесписочное число работников, чел.

Прибыль, млн. руб.

1

478,0

19,1

1415

112,2

2

207,3

9,6

813

30,2

3

194,4

8,9

852

30,4

4

462,3

18,3

1409

97,3

5

207,1

10,1

896

33,2

б

196,5

10,0

900

13,4

7

290,2

13,5

1195

49,3

8

356,6

14,0

1284

62,8

9

422,3

17,4

1359

104,6

10

590,0

22,7

1490

134,6

11

581,0

21,8

1392

138,9

12

297,3

12,8

1202

44,5

13

462,4

19,5

1378

111,6

14

582,3

22,1

1482

143,2

Требуется выполнить группировку предприятий по объему продукции, приняв следующие интервалы:

1)до 200 млн. руб.; 2) от 200 до 400 млн.руб.; 3) от 400 млн.руб. и более. По каждой группе и в целом по всем предприятиям определить:

число предприятий;

среднесписочное число работников;

среднегодовую стоимость основных средств;

объем продукции всего; средний объем продукции на одного работника; средний объем продукции на 1 млн. руб. стоимости основных средств;

прибыль всего; среднюю прибыль на одного работника; среднюю прибыль на 1 млн. руб. стоимости основных средств.

Сделать вывод.

Для удобства вычислений заполняем сначала вспомогательную таблицу.

Таблица 24

Результаты группировки приведены в следующей аналитической таблице.

Таблица 25

Значения показателей объема продукции, прибыли, среднегодовой стоимости основных средств и среднесписочного числа работников по каждой группе и по всем предприятиям получаются суммированием соответствующих значений по каждому предприятию из вспомогательной таблицы.

Средние показатели объема продукции и прибыли на одного работника рассчитаны делением соответствующих суммарных показателей на число работников по группе (или по всем предприятиям). Аналогично рассчитаны средние показатели объема продукции и прибыли на один млн. руб. основных средств.

По результатам группировки, приведенной в аналитической таблице, можно сделать следующие выводы.

По объему продукции предприятия разделены на мелкие, средние и крупные. Доля мелких предприятий значительно ниже, чем доля средних и крупных.

Значение объема продукции в среднем на одного работника возрастает от мелких предприятий к крупным (I гр. - 223,1 тыс. руб., II гр. - 252,04 тыс. руб., III гр. - 360,53 тыс.руб.).

Еще более значительно растет прибыль на одного работника (I гр. - 25 тыс. руб., II гр. - 40,82 тыс. руб., III гр. - 84,88 тыс. руб.). На крупных предприятиях прибыль на одного работника в 3,4 раза выше, чем на мелких, и в два с лишним раза выше, чем на средних.

Аналогичная картина наблюдается и при сравнении объема продукции и прибыли в среднем на 1 млн. руб. основных средств. Так для крупных предприятий эта прибыль примерно в два с половиной (5,98:2,317ss2,58) раза больше, чем для мелких и в 1,6 раза больше, чем для средних.

Эти данные свидетельствуют о наибольшей эффективности предприятий третьей группы.

Задача 17

Абсолютные, относительные и средние величины

По каждому из трех предприятий фирмы (г- порядковый номер предприятия), имеются соответствующие данные о фактическом объеме реализованной в 2000 г. продукции (у0 млн.руб.), о плановом задании по росту реализованной продукции на 2001 г. (8, %), а также о фактическом объеме реализованной в 2001 г. продукции (ух млн.руб.). Статистические данные приведены в таблице.

Требуется определить в целом по фирме:

1) размер планового задания по росту объема реализованной продукции в2001 г;

2) процент выполнения плана по объему реализованной продукции в2001г.;

3) показатель динамики реализованной продукции.

Таблица 26

i

y0i

дi%

y1i

1

28,5

103,0

31

2

51,5

105,0

55,5

3

62,5

102,5

63,0

При решении задачи используются следующие понятия: Относительный показатель динамики (ОПД) характеризует изменение явления во времени

ОПД= или в процентах ОПД=100%,

где у0 - базовый уровень исследуемого явления. В нашей задаче это объем реализованной продукции в 2000г; уi (i - 0,1,2,3,...) - уровень явления за одинаковые последовательные периоды времени (например, выпуск продукции по годам). ОПД иначе называются темпами роста. Они могут быть базовыми или цепными .

Относительный показатель плана ОПВП) - отношение величины показателя по плану (упл) к его фактической величине в базисном (или предшествующем) периоде.

ОПП= или ОПП=100%.

Относительный показатель выполнения плана (ОПВП) - отношение фактической (отчетной) величины показателя у1 к запланированной на тот же период времени его величине

ОПВП=

ОПД, ОПП и ОПВП связаны соотношением или

опп·опвп=опд.

Решение задачи 7.

1. Найдем размер планового задания в целом по фирме по росту объема реализованной продукции в 2001 г., т.е. ОППф - относительный показатель плана фирмы.

Для этого найдем сначала плановое задание на 2001 г. по каждому предприятию и в целом по фирме

28,5·1,03+51,5·1,05+62,5·1,025=

= 29,355 + 54,075 + 64,0625 = 147,4925 (млн.руб.).

Достигнутый в базисном периоде (2000г.) уровень в целом по фирме

составляет 28,5 + 51,5 + 62,5 = 142,5 (млн.руб.)

Теперь можно найти относительный показатель плана в целом по фирме на 2001г.

ОППф=

или в процентах ?103,5%.

2. Найдем процент выполнения плана по объему реализованной продукции в 2001 г. в целом по фирме (ОПВПф). Для этого найдем фактический уровень, достигнутый в 2001 г.

31 + 55,5 + 63,0 = 149,5 млн.руб., тогда

ОПВПф=1,0136108 или 101,36%, т.е. план перевыполнен на 1,36%.

3. Найдем относительный показатель динамики реализованной продукции в целом по фирме (ОПДф)

ОПДф=1,0491228 или ?104,91%,

т.е. фактический рост составил ?4,91%.

Проверка: ОПДф=ОППф·ОПВПф=1,035035·1,0136108=1,049123.

Задача 18

график эмпирический труд

Элементы дисперсионного анализа.

По каждой из трех основных рабочих профессий цеха (i -порядковый номер профессии: 1-токари; 2-фрезеровщики; 3-слесари) имеются соответствующие данные о числе рабочих профессии ( чел.), о средней заработной плате ( руб.), а также о внутригрупповой дисперсии заработной платы ( руб2). Статистические данные за месяц приведены в таблице.

Требуется:

определить общую дисперсию заработной платы рабочих цеха;

оценить однородность совокупности рабочих цеха по уровню месячной заработной платы;

определить, на сколько процентов дисперсия в размере заработной платы обусловлена различиями в профессии рабочих и влиянием других причин.

Таблица 27

i

1

52

2650

2400

2

26

2780

3100

3

42

2420

730

Предварительные сведения.

Для характеристики величины вариации (колеблемости) признака статистической совокупности используются абсолютные и относительные показатели. В качестве абсолютных показателей чаще всего рассматривают дисперсию и среднеквадратическое отклонение (СКО).

,

где - наблюдённые значения признака (варианты), п - общее число вариант (объем выборки). Суммирование в этой формуле производится по всем вариантам; - среднее значение признака, - среднее значение квадрата признака

.

Изучая только общую дисперсию интересующего исследователя признака, нельзя оценить влияние отдельных факторов, как качественных, так и количественных, на величину признака. Это можно сделать при помощи метода группировки, когда варианты подразделяются на непересекающиеся группы по признаку-фактору. При этом, кроме общей средней по всей выборке, рассматриваются средние по отдельным группам и следующие показатели дисперсии:

общая дисперсия

межгрупповая дисперсия ,

внутригрупповые дисперсии ,

средняя внутригрупповая дисперсия .Кратко охарактеризуем эти дисперсии. 1. Общая дисперсия учитывает влияние всех факторов, от которых зависит величина изучаемого признака X

,

где - общая средняя по всей выборке.

2. Межгрупповая дисперсия (дисперсия групповых средних) отражает систематическую вариацию, т.е. те различия в величине изучаемого признака, которые возникают под влиянием фактора, положенного в основу группировки. Эта дисперсия определяется по формуле:

здесь - внутригрупповые средние, - число вариант в i -ой группе; к число групп, суммирование производится по различным группам.

3. Внутригрупповая дисперсия

отражает рассеяние значений признака, относящихся к одному уровню группировочного фактора, поэтому она определяется не этим фактором, а другими причинами.

4. Средняя внутригрупповая дисперсия , так же как и , характеризует случайную вариацию, возникающую под влиянием других, неучтенных факторов, и не зависит от условия, положенного в основу группировки. Эта дисперсия определяется по формуле

.

Можно доказать, что имеет место правило сложения дисперсий

Отношение показывает, какую долю общей дисперсии составляет

дисперсия, возникающая под влиянием группировочного фактора, т.е. позволяет оценить влияние этого фактора на величину изучаемого признака X.

При сравнении колеблемости различных признаков в одной и той же совокупности или при сравнении колеблемости одного и того же признака в разных совокупностях используются относительные показатели вариации. Наиболее распространенным среди относительных показателей вариации является коэффициент вариации

Его применяют также и для характеристики однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33% (для распределений, близких к нормальному).

Решение задачи 8.

1. Найдем среднюю из внутригрупповых дисперсий

1967,17 (руб2).

Определим среднюю зарплату по цеху для основных рабочих профессий (общую среднюю)

2597,67(руб).

Находим межгрупповую дисперсию

=19438(руб2).

Используя правило сложения дисперсий, найдем общую дисперсию заработной платы:

= 19438 +1967 = 21405 (руб2)

2. Оценим однородность совокупности рабочих цеха по уровню месячной заработной платы с помощью коэффициента вариации

5,63%.Так как V < 33 %, то совокупность считается однородной.

3. Общая дисперсия заработной платы рабочих цеха обусловлена различиями в профессии на

.

Эта же дисперсия обусловлена влиянием других причин на

Задача 19

Элементы корреляционного анализа.

По 14-ти предприятиям городского хозяйства (i-порядковый номер предприятия) имеются соответствующие данные об объеме продукции (услуг) за месяц (у млн.руб.) и уровне механизации труда (х, %). Статистические данные

приведены в таблице.

Для выявления наличия корреляционной связи между объемом продукции

и уровнем механизации труда требуется:

1) измерить тесноту связи между признаками с помощью коэффициента

корреляции рангов Спирмена;

2) проверить его достоверность на уровне значимости б= 0,05;

Таблица 28

С помощью выборочного коэффициента ранговой корреляции Спирмена оценивается теснота связи между двумя качественными переменными X и Y. Этот коэффициент применяется и в случае количественных переменных, если заранее не гарантируется нормальность распределения двумерной случайной величины (X,Y).

Выборочный коэффициент служит точечной оценкой генерального коэффициента ранговой корреляции . Коэффициенты и изменяются от минус единицы до плюс единицы. Чем ближе к 1, тем теснее связь между переменными X и Y.

1. Для того чтобы вычислить коэффициент ранговой корреляции , нужно сначала провести ранжировку объектов и получить две согласованные последовательности рангов.

Расположим наблюдаемые пары в порядке невозрастания качества по показателю X:

Таблица 29

Затем пронумеруем объекты (числа) в каждой из строк в порядке неубывания. Рангом объекта называется его номер в ранжировке. Получим следующую таблицу:

Таблица 30

В первой ранжировке обведены группы объектов, имеющих одинаковое качество по переменной X; во второй ранжировке единообразно отмечены объекты, имеющие одинаковое качество по переменной Y.

Далее объектам одинакового качества присваиваем средние ранги (средние арифметические порядковых номеров этих объектов). В результате получим две согласованные последовательности рангов:

Таблица 31

В последней строке записаны разности рангов .

Найдем сумму квадратов разностей рангов: =670,5 и по известной формуле вычислим выборочный коэффициент ранговой корреляции Спирмена:

2) Для проверки статистической значимости выборочного коэффициента ранговой корреляции Спирмена на заданном уровне значимости б выдвигается гипотеза Но об отсутствии ранговой корреляционной связи:

.

Для проверки выдвинутой гипотезы используется статистика Стьюдента

,

где п - число пар (xi, yi) в выборке.

При условии справедливости гипотезы H0 случайная величина Т имеет известное t -распределение Стьюдента с к=п-2 степенями свободы.

Зная , вычисляем наблюдаемое значение статистики Стьюдента:

и число степеней свободы к = п - 2 = 12.

По таблице критических точек распределения Стьюдента для двусторонней критической области находим критическую точку статистики Стьюдента (см. например [4]),

.

Критерий проверки:

Если , то гипотеза H0 сохраняется (ранговая корреляционная связь практически отсутствует);

Если , то гипотеза Н0 отвергается (существует значимая корреляционная связь между переменными X и Y).

В нашем случае \Тнабл\ = 1,863 < =2,18, поэтому в соответствие с критерием проверки заключаем, что незначимо отличается от нуля, т.е. ранговая корреляционная связь практически отсутствует.

Задача 20

Прогнозирование на основе сглаженного временного ряда

Динамика удельного расхода условного топлива на производство тепло-энергии (yt, кг/Гкал) на ТЭЦ по годам представлена в таблице. Требуется:

произвести сглаживание ряда методом трехлетней скользящей средней;

выровнять ряд по прямой - т.е. оценить параметры bo,b1 линейного тренда = b0 + b1t методом наименьших квадратов;

начертить графики первичного и сглаженных рядов;

на уровне значимости б = 0,05 проверить согласованность линейной трендовой модели с результатами наблюдений;

методом экстраполяции найти точечные и интервальные (с доверительной вероятностью г = 0,95) оценки прогноза экономического показателя yt на2002 и 2003г.г.

Таблица 32

график эмпирический труд

Временным рядом называется последовательность значений (уровней) некоторого экономического показателя yt, расположенных в порядке возрастания времени. Уровни ряда должны отражать значения экономического показателя за одинаковые или через одинаковые промежутки времени.

Одной из важнейших задач исследования временного ряда является задача выявления основной тенденции развития (тренда) изучаемого процесса.

Решение этой задачи необходимо для прогнозирования. При этом исходят из того, что тенденция развития, установленная в прошлом, может быть распространена (экстраполирована) на будущий период.

Наиболее простыми и часто применяемыми способами выявления основной тенденции развития являются сглаживание временного ряда методом скользящей средней или выравнивание по прямой методом наименьших квадратов.

1) Метод скользящей средней основан на переходе от начальных значений членов ряда к их средним значениям на интервале времени, длина которого определена заранее. При этом сам выбранный интервал времени "скользит" вдоль ряда, получаемый таким образом ряд скользящих средних ведет себя более гладко, чем исходный ряд.

Для нашего примера скользящие средние находим по формуле

.

Например, при t = 2

(169,2 +168,1 +168,9)168,7,

при t = 3 (168,1 +168,9 +168,4) 168,5.

По результатам получим сглаженный ряд:

Таблица 34

2) По статистическим данным найдем оценки и параметров линейного тренда методом наименьших квадратов. Для этого применим известные формулы [1]:

,

где

.

Здесь и в дальнейшем t - номер уровня ряда: 1993 г. соответствует номер 1,... 2001 году - номер 9.

Вычисление средних значений организуем в форме расчетной таблицы.

Таблица 35

.

Таким образом, искомые оценки параметров линейного аренда равны: = 169,1695, = -0,2429. Уравнение линейного тренда имеет вид:

169,1695 - 0,2429·t.

3) На рисунке цифрой (1) отмечен первичный ряд, цифрой (2) - скользящая трехлетняя средняя, цифрой (3) помечен ряд, выровненный по прямой.

Рис. 5

4) Проверка согласованности линейной трендовой модели с результатами наблюдений выполняется как решение задачи проверки статистической гипотезы об отсутствии линейной статистической связи переменных и t на заданном уровне значимости б = 0,05. Для проверки гипотезы используется коэффициент детерминации и применяется статистика Фишера с и к2=п - 2 степенями свободы.

В рассматриваемом случае 28209,53 - (167,955)2 = 0,648, , .

Критическое значение статистики Фишера равно

.

Так как , то выдвинутая гипотеза Hо отвергается, что свидетельствует о согласии линейной трендовой модели с результатами наблюдений.

5) По полученному уравнению линейного тренда =169,1695- 0,2429 t найдем точечные (индивидуальные) прогнозы показателя на 2002 и 2003 г.г.

Для 2002г. t = 10

166,7405.

Для 2003г. t = 11

166,4976.

Дать интервальную оценку тренда - значит указать границы интервала, в который попадет возможное значение переменной с заданной доверительной вероятностью г (в нашем примере г = 0,95).

Этот интервал определяется по известным формулам [3]

,

где д - точность прогноза , здесь к=п-2 - число степеней свободы, б=1-г, ищется по таблице критических точек распределения Стьюдента для двусторонней критической области (см., например [4]); в нашем случае б=1 - 0,95 = 0,05; к = 9-2 =7; 2,36. (Можно воспользоваться так же таблицами [3]). - исправленное среднеквадратическое отклонение (С.К.О.) индивидуальных значений зависимой переменной

.

Из этой формулы видно, чем больше , тем меньше точность прогноза. S - исправленное С.К.О. ошибок линейной регрессии

.

Таблица 36. Вычисление доверительных интервалов прогнозов организуем в виде таблицы

t

yt

1

169,2

168,9266

0,2734

0,07475

2

168,1

168,6837

-0,5837

0,34071

3

168,6

168,4408

0,1592

0,02534

4

168,4

168,1979

0,2021

0,04084

5

167,9

167,9550

-0,055

0,00303

6

167,6

167,7121

-0,1121

0,01257

7

167,8

167,4692

0,3308

0,10943

8

166,9

167,2263

-0,3263

0,10647

9

167,1

166,9834

0,1166

0,01360

-

-

-

0,72674

.

.

Дальнейшие вычисления проводим отдельно для t =10 (2002 г.) и t =11 (2003 г.) Для t = 10

.

,

166,74-0,94<<166,74+0,94.

Итак, с вероятностью г = 0,95, удельный расход условного топлива в 2002 г. будет принадлежать интервалу (кг/Гкал)

165,8 << 167,68.

Аналогично для 2003 г. t = 11, получим

. , ,

166,498-0,995<<166,498+0,995. 165,50<<167,49, г=0,95.

график эмпирический труд

Литература

1. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики: Учебник. М.: ИНФРА-М, 2001. 416 с.

2. Ефимова М.Р., Ганченко О.И., Петрова Е.В. Практикум по общей теории статистики: Учеб. пособие. М.: Финансы и статистика, 2001. 280 с.

3. Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов / Под ред. проф. Н.Ш. Кремера. М.:ЮНИТИ-ДАНА, 2002. 311 с.

4. Методические рекомендации "Методика выполнения дипломных работ по специализации 030543 Профессионально педагогические технологии". Екатеринбург: Изд-во УГППУ, 1998.

5. Шолохович Ф.А., Васин В.В. Основы высшей математики. Екатеринбург: Уральское изд-во, 2003. 416с.

6. Грабарь М.И., Краснянская К.Л. Применение математической статистики в педагогических исследованиях. Непараметрические методы. М.: Педагогика, 1977. 136 с.

7. Гмурман В.Е. Теория вероятностей и математическая статистика: Учеб. пособие для вузов. М.: Высш. школа, 1972. 368 с.

8. Сборник задач по математике для вузов. Специальные курсы. / Под ред. А.В. Ефимова. М.: Наука, 1984. 608 с.

Приложение 1

Таблица значений функции Лапласа

Таблица 38

0,00

0,0000

0,32

0,1255

0,64

0,2389

0,96

0,3315

0,01

0,0040

0,33

0,1293

0,65

0,2422

0,97

0,3340

0,02

0,0080

0,34

0,1331

0,66

0,2454

0,98

0,3365

0,03

0,0120

0,35

0,1368

0,67

0,2486

0,99

0,3389

0,04

0,0160

0,36

0,1406

0,68

0,2517

1,00

0,3413

0,05

0,0199

0,37

0,1443

0,69

0,2549

1,01

0,3438

0,06

0,0239

0,38

0,1480

0,70

0,2580

1,02

0,3461

0,07

0,0279

0,39

0,1517

0,71

0,2611

1,03

0,3485

0,08

0,0319

0,40

0,1554

0,72

0,2642

1,04

0,3508

0,09

0,0359

0,41

0,1591

0,73

0,2673

1,05

0,3531

0,10

0,0398

0,42

0,1628

0,74

0,2703

1,06

0,3554

0,11

0,0438

0,43

0,1664

0,75

0,2734

1,07

0,3577

0,12

0,0478

0,44

0,1700

0,76

0,2764

1,08

0,3599

0,13

0,0517

0,45

0,1736

0,77

0,2794

1,09

0,3621

0,14

0,0557

0,46

0,1772

0,78

0,2823

1,10

0,3643

0,15

0,0596

0,47

0,1808

0,79

0,2852

1,11

0,3665

0,16

0,0636

0,48

0,1844

0,80

0,2881

1,12

0,3686

0,17

0,0675

0,49

0,1879

0,81

0,2910

1,13

0,3708

0,18

0,0714

0,50

0,1915

0,82

0,2939

1,14

0,3729

0,19

0,0753

0,51

0,1950

0,83

0,2967

1,15

0,3749

0,20

0,0793

0,52

0,1985

0,84

0,2995

1,16

0,3770

0,21

0,0832

0,53

0,2019

0,85

0,3023

1,17

0,3790

0,22

0,0871

0,54

0,2054

0,86

0,3051

1,18

0,3810

0,23

0,0910

0,55

0,2088

0,87

0,3078

1,19

0,3830

0,24

0,0948

0,56

0,2123

0,88

0,3106

1,20

0,3849

0,25

0,0987

0,57

0,2157

0,89

0,3133

1,21

0,3869

0,26

0,1026

0,58

0,2190

0,90

0,3159

1,22

0,3883

0,27

0,1064

0,59

0,2224

0,91

0,3186

1,23

0,3907

0,28

0,1103

0,60

0,2257

0,92

0,3212

1,24

0,3925

0,29

0,1141

0,61

0,2291

0,93

0,3238

1,25

0,3944

0,30

0,1179

0,62

0,2324

0,94

0,3264

0,31

0,1217

0,63

0,2357

0,95

0,3289

1,26

0,3962

1,59

0,4441

1,92

0,4726

2,50

0,4938

1,27

0,3980

1,60

0,4452

1,93

0,4732

2,52

0,4941

1,28

0,3997

1,61

0,4463

1,94

0,4738

2,54

0,4945

1,29

0,4015

1,62

0,4474

1,95

0,4744

2,56

0,4948

1,30

0,4032

1,63

0,4484

1,96

0,4750

2,58

0,4951

1,31

0,4049

1,64

0,4495

1,97

0,4756

2,60

0,4953

1,32

0,4066

1,65

0,4505

1,98

0,4761

2,62

0,4956

1,33

0,4082

1,66

0,4515

1,99

0,4767

2,64

0,4959

1,34

0,4099

1,67

0,4525

2,00

0,4772

2,66

0,4961

1,35

0,4115

1,68

0,4535

2,02

0,4783

2,68

0,4963

1,36

0,4131

1,69

0,4545

2,04

0,4793

2,70

0,4965

1,37

0,4147

1,70

0,4554

2,06

0,4803

2,72

0,4967

1,38

0,4162

1,71

0,4564

2,08

0,4812

2,74

0,4969

1,39

0,4177

1,72

0,4573

2,10

0,4821

2,76

0,4971

1,40

0,4192

1,73

0,4582

2,12

0,4830

2,78

0,4973

1,41

0,4207

1,74

0,4591

2,14

0,4838

2,80

0,4974

1,42

0,4222

1,75

0,4599

2,16

0,4846

2,82

0,4976

1,43

0,4236

1,76

0,4608

2,18

0,4854

2,84

0,4977

1,44

0,4251

1,77

0,4616

2,20

0,4861

2,86

0,4979

1,45

0,4265

1,78

0,4625

2,22

0,4868

2,88

0,4980

1,46

0,4279

1,79

0,4633

2,24

0,4875

2,90

0,4981

1,47

0,4292

1,80

0,4641

2,26

0,4881

2,92

0,4982

1,48

0,4306

1,81

0,4649

2,28

0,4887

2,94

0,4984

1,49

0,4319

1,82

0,4656

2,30

0,4893

2,96

0,4985

1,50

0,4332

1,83

0,4664

2,32

0,4898

2,98

0,4986

1,51

0,4345

1,84

0,4671

2,34

0,4904

3,00

0,49865

1,52

0,4357

1,85

0,4678

2,36

0,4909

3,20

0,49931

1,53

0,4370

1,86

0,4686

2,38

0,4913

3,40

0,49966

1,54

0,4382

1,87

0,4693

2,40

0,4918

3,60

0,49841

1,55

0,4394

1,88

0,4699

2,42

0,4922

3,80

0,499928

1,56

0,4406

1,89

0,4706

2,44

0,4927

4,00

0,499968

1,57

0,4418

1,90

0,4713

2,46

0,4931

4,50

0,499997

1,58

0,4429

1,91

0,4719

2,48

0,4934

5,00

0,499997

Приложение 2

Таблица значений функции

Таблица 39

0

1

2

3

4

5

6

7

8

9

0,0

0,399

3989

3989

3988

3986

3984

3982

3980

3977

3973

0,1

3970

3965

3961

3956

3951

3945

3939

3932

3925

3918

0,2

3910

3902

3894

3885

3876

3867

3857

3847

3836

3825

0,3

3814

3802

3790

3778

3765

3752

3739

3726

3712

3697

0,4

3683

3668

3852

3637

3621

3605

3589

3572

3555

3538

0,5

3521

3503

3485

3467

3448

3429

3410

3391

3372

3352

0,6

3332

3312

3292

3271

3251

3230

3209

3187

3166

3144

0,7

3123

3101

3079

3056

3034

3011

2989

2966

2943

2920

0,8

2897

2874

2850

2827

2803

2780

2756

2732

2709

2685

0,9

2661

2637

2613

2589

2565

2541

2516

2492

2468

2444

1,0

0,242

2396

2371

2347

2323

2299

2275

2251

2227

2203

1,1

2179

2155

2131

2107

2083

2059

2036

2012

1989

1965

1,2

1942

1919

1895

1872

1849

1826

1804

1781

1758

1736

1,3

1714

1691

1669

1647

1626

1604

1582

1561

1539

1518

1,4

1497

1476

1456

1435

1415

1394

1374

1354

1334

1315

1,5

1295

1276

1257

1238

1219

1200

1182

1163

1145

1127

1,6

1109

1092

1074

1057

1040

1023

1006

0989

0973

0957

1,7

0940

0925

0909

0893

0878

0863

0848

0833

0818

0804

1,8

0790

0775

0761

0748

0734

0721

0707

0694

0681

0669

1,9

0656

0644

0632

0620

0608

0596

0584

0573

0562

0551

2,0

0,054

0529

0519

0508

0498

0488

0478

0468

0459

0449

2,1

0440

0431

0422

0413

0404

0396

0387

0379

0371

0363

2,2

0355

0347

0339

0332

0325

0317

0310

0303

0297

0290

2,3

0283

0277

0270

0264

0258

0252

0246

0241

0235

0229

2,4

0224

0219

0213

0208

0203

0198

0194

0189

0184

0180

2,5

0175

0171

0167

0163

0158

0154

0151

0147

0143

0139

2,6

0136

0132

0129

0126

0122

0119

0116

0113

0110

0107

2,7

0104

0101

0099

0096

0093

0091

0088

0086

0084

0081

2,8

0079

0077

0075

0073

0071

0069

0067

0065

0063

0061

2,9

0060

0058

0056

0055

0053

0051

0050

0048

0047

0043

3,0

0,004

0043

0042

0040

0039

0038

0037

0036

0035

0034

3,1

0033

0032

0031

0030

0029

0028

0027

0026

0025

0025

3,2

0024

0023

0022

0022

0021

0020

0020

0019

0018

0018

3,3

0017

0017

0016

0016

0015

0015

0014

0014

0013

0013

3,4

0012

0012

0012

0011

0011

0010

0010

0010

0009

0009

3,5

0009

0008

0008

0008

0008

0007

0007

0007

0007

0006

3,6

0006

0006

0006

0005

0005

0005

0005

0005

0005

0004

3,7

0004

0004

0004

0004

0004

0004

0003

0003

0003

0003

3,8

0003

0003

0003

0003

0003

0002

0002

0002

0002

0002

3,9

0002

0002

0002

0002

0002

0002

0002

0002

0001

0001

Приложение 3

Таблица 40. Критические точки распределения

Число степеней свободы

Уровень значимости

0,01

0,025

0,05

0,95

0,975

0,99

1

6,6

5,0

3,8

0,0039

0,00098

0,00016

2

9,2

7,4

6,0

0,103

0,051

0,020

3

11,3

9,4

7,8

0,352

0,216

0,115

4

13,3

11,1

9,5

0,711

0,484

0,297

5

15,1

12,8

11,1

1,15

0,831

0,554

6

16,8

14,4

12,6

1,64

1,24

0,872

7

18,5

16,0

14,1

2,17

1,69

1,24

8

20,1

17,5

15,5

2,73

2,18

1,65

9

21,7

19,0

16,9

3,33

2,70

2,09

10

23,2

20,5

18,3

3,94

3,25

2,56

11

24,7

21,9

19,7

4,57

3,82

3,05

12

26,2

23,3

21,0

5,23

4,40

3,57

13

27,7

24,7

22,4

5,89

5,01

4,11

14

29,1

26,1

23,7

6,57

5,63

4,66

15

30,6

27,5

25,0

7,26

6,26

5,23

16

32,0

28,8

26,3

7,96

6,91

5,81

17

33,4

30,2

27,6

8,67

7,56

6,41

18

34,8

31,5

28,9

9,39

8,23

7,01

19

36,2

32,9

30,1

10,1

8,91

7,63

20

37,6

34,2

31,4

10,9

9,59

8,26

21

38,9

35,5

32,7

11,6

10,3

8,90

22

40,3

36,8

33,9

12,3

11,0

9,54

23

41,6

38,1

35,2

13,1

11,7

10,2

24

43,0

39,4

36,4

13,8

12,4

10,9

25

44,3

40,6

37,7

14,6

13,1

11,5

26

45,6

41,9

38,9

15,4

13,8

12,2

27

47,0

43,2

40,1

16,2

14,6

12,9

28

48,3

44,5

41,3

16,9

15,3

13,6

29

49,6

45,7

42,6

17,7

16,0

14,3

30

50,9

47,0

43,8

18,5

16,8

15,0

Приложение 4

Таблица значений

Таблица 41

Приложение 5

Таблица значений

Таблица 42

Приложение 6

Критические точки распределения Фишера-Снедекора

- число степеней свободы большей дисперсии, - число степеней свободы меньшей дисперсии. Уровень значимости

Таблица 43

Таблица 44

Приложение 7

Таблица 45. Критические точки распределения Стьюдента

Число степеней свободы

Уровень значимости (двусторонняя критическая область)

0,10

0,05

0,02

0,01

0,002

0,001

1

6,31

12,7

31,82

63,7

318,2

637,0

2

2,92

4,30

6,97

9,92

22,33

31,6

3

2,35

3,18

4,54

5,84

10,22

12,9

4

2,13

2,78

3,75

4,60

7,17

8,61

5

2,01

2,57

3,37

4,03

5,89

6,86

6

1,94

2,45

3,14

3,71


Подобные документы

  • Построение полигона относительных частот, эмпирической функции распределения, кумулянты и гистограммы. Расчет точечных оценок неизвестных числовых характеристик. Проверка гипотезы о виде распределения для простого и сгруппированного ряда распределения.

    курсовая работа [216,2 K], добавлен 28.09.2011

  • Вероятность совместного появления двух белых шаров. Расчет числа исходов, благоприятствующих интересующему событию. Функция распределения случайной величины. Построение полигона частот, расчет относительных частот и эмпирической функции распределения.

    задача [38,9 K], добавлен 14.11.2010

  • Порядок и принципы построения вариационного ряда. Расчет числовых характеристик статистического ряда. Построение полигона и гистограммы относительных частот, функции распределения. Вычисление асимметрии и эксцесса. Построение доверительных интервалов.

    контрольная работа [108,5 K], добавлен 03.10.2010

  • Функциональные и корреляционные зависимости. Сущность корреляционной связи. Методы выявления наличия корреляционной связи между двумя признаками и измерение степени ее тесноты. Построение корреляционной таблицы. Уравнение регрессии и способы его расчета.

    контрольная работа [55,2 K], добавлен 23.07.2009

  • Закон распределения случайной величины Х, функция распределения и формулы основных числовых характеристик: математическое ожидание, дисперсия и среднеквадратичное отклонение. Построение полигона частот и составление эмпирической функции распределения.

    контрольная работа [36,5 K], добавлен 14.11.2010

  • Таблица значений выборки дискретных случайных величин в упорядоченном виде. Таблица интервального статистического ряда относительных частот. Задание эмпирической функции распределений и построение ее графика. Полигон и распределение случайной величины.

    практическая работа [109,3 K], добавлен 26.07.2012

  • Показатели тесноты связи. Смысл коэффициентов регрессии и эластичности. Выявление наличия или отсутствия корреляционной связи между изучаемыми признаками. Расчет цепных абсолютных приростов, темпов роста абсолютного числа зарегистрированных преступлений.

    контрольная работа [1,5 M], добавлен 02.02.2014

  • Статистическая обработка данных контроля времени (в часах) работы компьютерного класса в день. Полигон абсолютных частот. Построение графика эмпирической функции распределения и огибающей гистограммы. Теоретическое распределение генеральной совокупности.

    контрольная работа [379,3 K], добавлен 23.08.2015

  • Предмет, методы и понятия математической статистики, ее взаимосвязь с теорией вероятности. Основные понятия выборочного метода. Характеристика эмпирической функции распределения. Понятие гистограммы, принцип ее построения. Выборочное распределение.

    учебное пособие [279,6 K], добавлен 24.04.2009

  • Общие сведения об элементарных функциях. Схема исследования функции и построения ее графика. Линейная, степенная, показательная, логарифмическая и тригонометрические функции. Простейшие преобразования графиков: параллельный перенос, деформация, отражение.

    курсовая работа [910,5 K], добавлен 16.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.