Теория двойственности в линейном программировании
Экономическое содержание двойственной задачи. Правила построения симметричных двойственных задач. Преобразование матрицы методом полного исключения переменных. Рассмотрение вопроса о целесообразности включения продукта в производственную программу.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 15.09.2017 |
Размер файла | 78,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Двойственные задачи в линейном программировании. Симметричные и несимметричные двойственные задачи. Связь исходной и двойственной задач. Анализ моделируемой ситуации (моделируемого объекта). Реализация двойственности на Visual Basic for Application.
курсовая работа [703,5 K], добавлен 14.10.2011Знакомство с особенностями построения математических моделей задач линейного программирования. Характеристика проблем составления математической модели двойственной задачи, обзор дополнительных переменных. Рассмотрение основанных функций новых переменных.
задача [656,1 K], добавлен 01.06.2016Преобразование матрицы: умножение, приведение коэффициентов на главной диагонали матрицы к 1. Решение системы уравнений методом Крамера. Определители дополнительных матриц. Определение вероятности события (теория вероятности), математическая статистика.
контрольная работа [73,5 K], добавлен 21.10.2010Решение двойственной задачи с помощью первой основной теоремы теории двойственности, графическим и симплексным методом. Математическая модель транспортной задачи, расчет опорного плана перевозок методами северо-западного угла и минимального элемента.
контрольная работа [333,3 K], добавлен 27.11.2011Основные сведения о симплекс-методе, оценка его роли и значения в линейном программировании. Геометрическая интерпретация и алгебраический смысл. Отыскание максимума и минимума линейной функции, особые случаи. Решение задачи матричным симплекс-методом.
дипломная работа [351,2 K], добавлен 01.06.2015Геометрический смысл решений неравенств, уравнений и их систем. Определение понятия двойственности с помощью преобразования Лежандра. Разбор примеров нахождения переменных или коэффициентов при неизвестных в целевой функции двойственной задачи.
дипломная работа [2,6 M], добавлен 30.04.2011Графическое решение задачи линейного программирования. Общая постановка и решение двойственной задачи (как вспомогательной) М-методом, правила ее формирования из условий прямой задачи. Прямая задача в стандартной форме. Построение симплекс таблицы.
задача [165,3 K], добавлен 21.08.2010Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.
реферат [109,2 K], добавлен 06.04.2003Применение функции Лагранжа в выпуклом и линейном программировании. Простейшая задача Больца и классического вариационного исчисления. Использование уравнения Эйлера-Лагранжа для решения изопериметрической задачи. Краевые условия для нахождения констант.
курсовая работа [1,2 M], добавлен 16.01.2013Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.
лекция [24,2 K], добавлен 14.12.2010Сущность понятия "симплекс-метод". Математические модели пары двойственных задач линейного программирования. Решение задачи симплексным методом: определение минимального значения целевой функции, построение первого опорного плана, матрица коэффициентов.
курсовая работа [219,4 K], добавлен 17.04.2013Способы решения системы линейных алгебраических уравнений: по правилу Крамера, методом матричным и Жордана-Гаусса. Анализ решения задачи методом искусственного базиса. Характеристика основной матрицы, составленной из коэффициентов системы при переменных.
контрольная работа [951,8 K], добавлен 16.02.2012Решение системы уравнений по формулам Крамера, методом обратной матрицы и методом Гаусса. Преобразование и поиск общего определителя. Преобразование системы уравнений в матрицу и приведение к ступенчатому виду. Алгебраическое дополнение элемента.
контрольная работа [84,5 K], добавлен 15.01.2014Применение леммы Бернсайда к решению комбинаторных задач. Орбиты группы перестановок. Длина орбиты группы перестановок. Лемма Бернсайда. Комбинаторные задачи. "Метод просеивания". Формула включения и исключения.
дипломная работа [163,6 K], добавлен 14.06.2007Основные правила решения системы заданных уравнений методом Гаусса с минимизацией невязки и методом простых итераций. Понятие исходной матрицы; нахождение определителя для матрицы коэффициентов. Пример составления блок-схемы метода минимизации невязок.
лабораторная работа [264,1 K], добавлен 24.09.2014Общие определения, связанные с понятием матрицы. Действия над матрицами. Определители 2-го и 3-го порядков, порядка n, порядок их вычисления и характерные свойства. Обратные матрицы и их ранг. Понятие и этапы элементарного преобразования матрицы.
лекция [30,2 K], добавлен 14.12.2010Расчет показателей матрицы, ее определителя по строке и столбцу. Решение системы уравнений методом Гаусса, по формулам Крамера, с помощью обратной матрицы. Вычисление предела без использования правила Лопиталя. Частные производные второго порядка функции.
контрольная работа [95,0 K], добавлен 23.02.2012Задачи и методы линейной алгебры. Свойства определителей и порядок их вычисления. Нахождение обратной матрицы методом Гаусса. Разработка вычислительного алгоритма в программе Pascal ABC для вычисления определителей и нахождения обратной матрицы.
курсовая работа [1,1 M], добавлен 01.02.2013Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
контрольная работа [462,6 K], добавлен 12.11.2010Рассмотрение основных подходов к построению математических моделей процесса. Сопряженное уравнение для простейшего уравнения диффузии и структура алгоритмов для решения задач. Использование принципа двойственности для представления линейного функционала.
курсовая работа [711,0 K], добавлен 03.08.2012