Кривая линия

Определение и способы задания плоской кривой, их классификация и разновидности: парабола, гипербола, эллипс, трансцендентные. Свойства и характеристики кривых линий: обводы и касательные, точки и кривизна. Особенности проекций и подходы к их анализу.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.08.2017
Размер файла 400,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Эллипс, гипербола, парабола как кривые второго порядка, применяемые в высшей математике. Понятие кривой второго порядка - линии на плоскости, которая в некоторой декартовой системе координат определяется уравнением. Теоремма Паскамля и теорема Брианшона.

    реферат [202,6 K], добавлен 26.01.2011

  • Исследование общего уравнения линии второго порядка и приведение его к простейшим (каноническим) формам. Инвариантность выражения АС-В2. Классификация линий второго порядка. Уравнения, определяющие эллипс и гиперболу. Директрисы кривых второго порядка.

    курсовая работа [132,1 K], добавлен 14.10.2011

  • Уравнения линии на плоскости, их формы. Угол между прямыми, условия их параллельности и перпендикулярности. Расстояние от точки до прямой. Кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и главные геометрические свойства.

    лекция [160,8 K], добавлен 17.12.2010

  • Регулярная кривая и ее отдельные точки. Касательная к кривой и соприкасающаяся плоскость. Эволюта и эвольвента плоской кривой. Кривые на плоскости, заданные уравнением в неявной форме. Примеры точки возврата; понятие асимптоты и полярных координат.

    курсовая работа [936,1 K], добавлен 21.08.2013

  • Окружность множество точек плоскости, равноудаленных от данной точки. Эллипс, множество точек плоскости, для каждой из которых сумма расстояний до двух точек плоскости. Парабола, множество точек плоскости, равноудаленных от данной точки плоскости.

    реферат [197,7 K], добавлен 03.08.2010

  • Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.

    контрольная работа [329,5 K], добавлен 19.12.2014

  • Образование конических сечений. Основное свойство и уравнение эллипса, исследование формы по его уравнению. Исследование форм параболы по ее уравнению. Директориальное свойство конических сечений. Эллипс, гипербола и парабола как конические сечения.

    курсовая работа [156,7 K], добавлен 08.11.2013

  • Линия - общая часть двух смежных областей поверхности. Характеристика спиралей – плоских кривых линий. Кардиоида как плоская линия, описываемая фиксированной точкой окружности. Описание циклоида и астроида. Синусоидальная спираль как семейство кривых.

    контрольная работа [268,4 K], добавлен 17.11.2010

  • Общее уравнение кривой второго порядка. Составление уравнений эллипса, окружности, гиперболы и параболы. Эксцентриситет гиперболы. Фокус и директриса параболы. Преобразование общего уравнения к каноническому виду. Зависимость вида кривой от инвариантов.

    презентация [301,4 K], добавлен 10.11.2014

  • Математическое понятие кривой. Общее уравнение кривой второго порядка. Уравнения окружности, эллипса, гиперболы и параболы. Оси симметрии гиперболы. Исследование формы параболы. Кривые третьего и четвертого порядка. Анъези локон, декартов лист.

    дипломная работа [877,9 K], добавлен 14.10.2011

  • Понятие и свойства плоских кривых, история их исследований, способы их образования, разновидности и свойства нормали. Методы построения некоторых видов кривых, называемых "Декартов лист", лемнискаты Бернулли, улитки Паскаля, строфоиды, циссоиды Диокла.

    курсовая работа [3,1 M], добавлен 29.03.2011

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие [3,6 M], добавлен 07.01.2012

  • Общее уравнение кривой второго порядка, преобразование систем координат. Классификация кривых по инвариантам, исследование уравнения кривой второго порядка. Изучение и примеры исследования инвариант поворота и параллельного переноса систем координат.

    курсовая работа [654,1 K], добавлен 28.09.2019

  • Понятие и свойства плоских кривых, история их исследований. Способы образования и разновидности плоских кривых. Кривые, изучаемые в школьном курсе математики. Разработка плана факультативных занятий по математике по теме "Кривые" в профильной школе.

    дипломная работа [906,7 K], добавлен 24.02.2010

  • История развития учения о линиях. Замечательные линии третьего порядка: Декартов лист, циссоида Диоклеса, строфрида, верзьера Аньези. Линии четвертого и высших порядков и некоторые трансцендентные линии: спираль Архимеда, кривая кратчайшего спуска.

    курсовая работа [1,7 M], добавлен 12.06.2011

  • Приведение уравнения к каноническому виду при помощи преобразований параллельного переноса и поворота координатных осей. Нахождение фокусов, директрис, эксцентриситета и асимптот кривой. Построение графика кривой в канонической и общей системах координат.

    контрольная работа [133,5 K], добавлен 12.01.2011

  • Интеграл по кривой, заданной уравнением y=y(x). Вычисление криволинейного интеграла. Кривая от точки А к В при изменении параметра. Непрерывные функции со своими производными. Отрезок параболы, заключенный между точками. Решение разными методами.

    презентация [44,4 K], добавлен 17.09.2013

  • Основные виды сечения конуса. Сечение, образованное плоскостью, проходящей через ось конуса (осевое) и через его вершину (треугольник). Образование сечения плоскостью, параллельной (парабола), перпендикулярной (круг) и не перпендикулярной (эллипс) оси.

    презентация [137,9 K], добавлен 12.12.2013

  • Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.

    дипломная работа [2,0 M], добавлен 18.05.2013

  • Понятие и классификация кривых Безье, их разновидности и методика, основные этапы построения. Порядок и условия применения данных кривых в компьютерной графике. Преобразование квадратичных кривых в кубические. Финитные функции. В-сплайны Шёнберга.

    реферат [456,6 K], добавлен 14.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.