Анализ математических подходов к идентификации лиц

Исследование алгоритмов по различным критериям, реализованных в разработанной системе распознавания человека по изображению лица. Рассмотрение трех основных подходов к распознаванию лиц. Зависимость процента распознавания от количества лиц в выборке.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 29.07.2017
Размер файла 246,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Анализ математических подходов к идентификации лиц

А.Н. Земцов, Зунг Хань Чан

В работе проведено исследование реализованных в разработанной системе распознавания человека по изображению лица алгоритмов по различным критериям. Рассматриваются три основные подхода к распознаванию лиц, приводятся, выявленные при реализации, достоинства и недостатки подходов.

Ключевые слова: Базы данных, распознавание лиц, выделение объектов, скрытые марковские модели, метод главных компонент, нейронная сеть, нейросетевые алгоритмы.

Одним из основных направлений исследований в решении задачи распознавания лиц является уменьшение вычислительной сложности на этапе классификации за счет снижения размерности данных. Метод главных компонент [1, 4, 9], дискретное косинусное преобразование [5, 6], линейный дискриминантный анализ [4, 9] являются основными методами снижения размерности данных. Особое внимание при этом уделяется методам классификации, таким как: метрические [3, 4], нейросетевые [4, 7] и на основе скрытых Марковских моделей [2]. Необходимо отметить, что сокращение времени решения задачи классификации, в том числе, может достигаться за счет распараллеливания вычислений [10].

Для анализа влияния разрешения входных изображений на процент распознавания, время создания, а также время обучения моделей, был проведен ряд экспериментов, часть результатов из которых представлены в данной работе. В качестве экспериментов были взяты оптимальные внутренние параметры метода главных компонент, метода на основе скрытых марковских моделей и многослойного персептрона [4]. Эксперименты проводились с использованием базы 40 наборов по 10 изображений размером 92х112 ORL, изображений размером 512х768 базы FERET [8], а также собственной азиатской базы, которая представляет собой 100 наборов изображений по 20 изображений в каждом. Как показано на рис. 1, изображения лиц представлены в различных параметрах освещенности, ракурса, мимики и возраста людей.

Рис. 1 Вариативность параметров освещенности, ракурса и мимики

Предварительное исследование показало, что процент распознавания резко снижается при уменьшении размера входного изображения менее чем 40х40 пикселей, и слабо возрастает после увеличения размера более чем 256х256 пикселей.

Рис. 2 Изменение процента распознавания в зависимости от качества входных изображений на проверочной выборке

Время обучения увеличивается с увеличением размера входного изображения. При увеличении разрешения с 50х50 до 256х256 пикселей время для обучения базиса пространства собственных лиц увеличивается в 5 раз, для двухслойного персептрона - в 2 раза, для скрытой Марковской модели - в 3 раза.

Рис. 3 Зависимость процента распознавания от количества лиц в обучающей выборке

распознавание лицо система изображение

По результатам исследований можно сделать вывод о том, что разрешение изображения прямо пропорционально времени обучения и распознавания для любого метода. Другими словами, увеличение разрешения изображения приводит к увеличению времени, и наоборот, снижение разрешения входного изображения приводит к ускорению работы системы, но уменьшению процента распознавания.

Для анализа влияния количества лиц в обучающей выборке на процент распознавания, время создания и обучения моделей, были проведены эксперименты, результаты которых представлены на рис. 3-4. Эксперименты проводились для двух методов [2, 7], т. к. реализованный метод главных компонент не предполагает изменения количества лиц в наборе для 20 изображений лиц каждого человека, не принадлежащих обучающему набору.

По результатам анализа можно сделать вывод, что при количестве обучающих примеров, лежащем в интервале , большую эффективность показал метод на основе скрытых Марковских моделей, а более стабильная работа обоих алгоритмов наблюдается в интервале , на котором оба метода достигают высокого процента распознавания.

Рис. 4 Зависимость времени обучения от количества обучающих лиц изображений

Дальнейшее увеличение количества обучающих лиц формирует прямую зависимость процента распознавания и возрастания времени обучения.

По результатам исследований можно сделать вывод о том, что увеличение количества элементов в обучающей выборке приводит к увеличению времени обучения. Наименьшее время обучения показала двухслойная нейронная сеть, что показывает трудоемкость вычислений в методе распознавания на основе скрытых Марковских моделей.

Оптимальное количество обучающих лиц лежит в интервале в зависимости от общего количества человек в базе изображений и поставленной задачи.

Метод главных компонент показал приемлемые результаты на нормированной базе изображений - 86.8%. При изменении различных параметров съемки, происходит заметное снижение процента распознавания, что обуславливает необходимость применения подсистемы предварительной обработки изображений: геометрическая обработка особенностей лица, нормализация интенсивности, удаление шума, повышение резкости и др. Также метод главных компонент показал наименьшее значение времени распознавания и обучения - около 5 секунд, что обусловлено обучением на одном лице каждого человека, это делает метод главных компонент перспективным для решения задачи поиска в больших базах данных, содержащих собственные векторы и значения ковариационной матрицы.

Двухслойная нейронная сеть показала наиболее высокий процент распознавания в условиях вариативности освещенности - 73.6%. По сравнению с методом на основе скрытых Марковских моделей, двухслойная нейронная сеть уступает малозначительно, а также характеризуется меньшим временем обучения и распознавания. Этот факт делает актуальным применение многослойных нейронных сетей для решения задачи контроля доступа на крупные предприятия, где с одной стороны необходимы незначительные показатели ошибок FRR и FAR, а с другой стороны необходимо небольшое время выполнения вычислений для режимов обучения и классификации.

Скрытые Марковские модели показали устойчивость и надежность в условиях существенного изменения ракурса, мимики лица, распознавания затемненных малоинформативных изображений с сохранением высокого процента распознавания - 87.4%, 96% и 88.2% соответственно. Однако, также было выявлено, что данный метод имеет самые большие показатели времени обучения базы скрытых марковских моделей, и как следствие, требует высокой производительности вычислительной системы, что сказывается на поиске в больших базах данных.

Литература

1. Kirby M. Application of the KL procedure for the characterization of human faces // IEEE Trans. on Pattern Analysis, 1990. Vol. 12. pp. 103-108.

2. Othman H., Aboulnasr T. A separable low complexity 2d hmm with application to face recognition // IEEE Trans. on Pattern Analysis, 2003. Vol. 25. pp. 1229-1238.

3. Седов В.А., Седова Н.А. Методы оценки качества полученных решений // Южно-сибирский научный вестник, 2012. № 1. С. 88-91.

4. Земцов А.Н. Алгоритмы распознавания лиц и их применение в системах биометрического контроля доступа. LAP Academic Publishing, 2011. 128 c.

5. Земцов А.Н. Сравнительный анализ эффективности методов сжатия изображений на основе дискретного косинусного преобразования // Прикладная информатика, 2011. № 5. С. 77-84.

6. Земцов А.Н. Сравнительный анализ эффективности методов сжатия изображений на основе дискретного косинусного преобразования // Прикладная информатика, 2011. № 4. С. 90-104.

7. Пучков Е.В. Сравнительный анализ алгоритмов обучения искусственной нейронной сети // Инженерный вестник Дона, 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/2135.

8. Phillips P.J. The FERET evaluation methodology for face recognition algorithms // IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. Vol. 22. pp. 1090-1104.

9. Mokeev A.V., Mokeev V.V. Pattern recognition by means of linear discriminant analysis and the principal components analysis // Pattern recognition and image analysis, 2015. Vol. 25. pp. 685-691.

10. Серов С.С., Андреев А.Е., Кравченя П.Д., Гущин Р.И., Чеботарев П.П. Сокращение времени оценки схожести текстовых документов на неоднородной многопроцессорной вычислительной системе // Инженерный вестник Дона, 2015, №2(2). URL: ivdon.ru/ru/magazine/archive/n2p2y2015/3031.

Размещено на Allbest.ru


Подобные документы

  • Рассмотрение основных подходов к построению математических моделей процесса. Сопряженное уравнение для простейшего уравнения диффузии и структура алгоритмов для решения задач. Использование принципа двойственности для представления линейного функционала.

    курсовая работа [711,0 K], добавлен 03.08.2012

  • Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.

    учебное пособие [2,1 M], добавлен 14.06.2014

  • Геометрическая формулировка задачи распознавания: построение поверхности, которая разделяет множества, соответствующие в пространстве признакам различных классов объектов. Основные понятия и определения. Непараметрические парзеновские оценки плотностей.

    курсовая работа [272,7 K], добавлен 10.04.2011

  • Применение интервальных графов. Алгоритмы распознавания интервальных графов: поиск в ширину, поиск в ширину с дополнительной сортировкой, лексикографический поиск в ширину, алгоритм "трех махов". Программа задания единичного интервального графа.

    курсовая работа [1,5 M], добавлен 10.02.2017

  • Динамическая модель как теоретическая конструкция, описывающая изменение состояний объекта. Характеристика основных подходов к построению: оптимизационный, описательный. Рассмотрение способов построения математических моделей дискретных объектов.

    контрольная работа [769,7 K], добавлен 31.01.2013

  • Использование системы MathCAD как средства описания алгоритмов решения основных математических задач. Рассмотрение законов Кеплера и понятия о всемирном тяготении. Аналитические и численные решения задачи трех тел (материальных точек), вывод уравнений.

    курсовая работа [287,2 K], добавлен 04.06.2013

  • Исследование зависимости потребления бензина в городе от количества автомобилей с помощью методов математической статистики. Построение диаграммы рассеивания и определение коэффициента корреляции. График уравнения линейной регрессии зависимости.

    курсовая работа [593,2 K], добавлен 28.06.2009

  • Треугольник как геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки. Основные элементы данной фигуры: вершины и стороны. Классификация и разновидности треугольников по различным признакам.

    презентация [343,2 K], добавлен 28.11.2013

  • Функции эритроцитов в организме человека, учет изменения их количества в связи с возрастом в рамках теории вероятностей и математической статистики. Обработка исходных данных, построение диаграммы рассеивания, гистограммы признаков; проверка гипотез.

    курсовая работа [1,6 M], добавлен 18.02.2012

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.