Функциональные ряды

Признак Вейерштрасса о равномерной сходимости функционального ряда. Изучение метода нахождения интервала сходимости степенного ряда. Приближенное вычисление с помощью рядов Тейлора и Маклорена. Тригонометрический ряд Фурье от четных и нечетных функций.

Рубрика Математика
Вид курс лекций
Язык русский
Дата добавления 30.07.2017
Размер файла 128,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки российской федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Волгодонский инженерно-технический институт - филиал НИЯУ МИФИ

Конспект лекций

по теме: «Функциональные ряды»

Волгодонск

1. Функциональные ряды

Определение: , где - функции переменной х называется функциональным рядом.

При некоторых значениях х функциональный ряд сходится, при других значениях х - расходится.

Определение: Множество значений переменной х, при которых функциональный ряд - сходится, называется областью сходимости функционального ряда. Задача нахождения области сходимости функционального ряда является весьма трудной, хотя для некоторых рядов область сходимости найти легко.

Пример:

1)

2)

2. Равномерная сходимость функционального ряда

Определение: Функциональный ряд называется мажорируемым на [a;b], если существует сходящийся числовой ряд из , так что …при . При этом числовой ряд - мажоранта функционального ряда .

Пример:

Как и числовой ряд ряд функциональный может быть записан в виде:

; где - n частичная сумма ряда, - n остаток ряда.

вычисление ряд тригонометрический тейлор

Определение: называется равномерно сходящимся на [a;b], если начиная с которого выполняется неравенство , при любом, т.е - равномерно сходится на [a;b] если , для .

Замечание: существуют сходящиеся функциональные ряды, которые не сходятся равномерно.

3. Признак Вейерштрасса о равномерной сходимости функционального ряда

Если функциональный ряд на [a;b] мажорируется сходящимся числовым рядом равномерно сходится на этом отрезке.

Свойства равномерно сходящегося функционального ряда:

Теорема 1: Если функциональный ряд ,составленный из непрерывных функций на [a;b], равномерно сходится на этом отрезке, то сумма ряда S(x) - тоже будет непрерывной функцией на [a;b].

Рассмотрим функциональный ряд

Этот ряд состоит из непрерывных степенных функций , n частичная сумма ряда

Вычислим сумму ряда:

- сходится, но S(x) - является разрывной функцией.

Вывод: S(x) не сходится равномерно.

Теорема 2: Если функциональный равномерно сходится на [a;b] его можно почленно интегрировать на любом отрезке входящем в [a;b] условием интегрируемости является непрерывность функции .

Пример:

Теорема 3: Если функциональный равномерно сходится на [a;b] и ряд составленный из производных тоже равномерно сходится на [a;b] функциональный ряд можно почленно дифференцировать.

Пример:

4. Степенные ряды

Определение: Степенным рядом называется ряд вида , где - коэффициент степенного ряда, зависит от n и не зависит от х.

Степенной ряд является частным случаем функционального ряда, поэтому естественно поставить вопрос об области сходимости степенного ряда и его равномерной сходимости. Ответ на вопрос какой вид имеет область сходимости степенного ряда дает теорема Абеля.

Теорема Абеля:

Если сходится в точке он сходится во всех точках, удовлетворяющих неравенству . Если расходится в точке он расходится во всех точках, удовлетворяющих неравенству .

Доказательство:

Пусть сходится в точке будет сходится ряд по необходимому признаку сходимости числовая последовательность - ограничена, т.е существует число M>0, что сразу для всех n.

Возьмем любое х удовл. и рассмотрим из абсолютных величин.

Оценим общий член этого ряда:

Ряд из членов геометрической прогрессии со знаменателем сходится исходный тоже сходится по I признаку сравнения, т.к его члены меньше членов сходящегося ряда сходится абсолютно.

Пусть расходится в точке.

Возьмем любое х удовл. , нужно доказать, что расходится при любом х, удовлетворяющем .

Предположим противное: - сходится по 1 части доказательства он будет сходится в точке .

Полученное противоречие доказывает теорему.

Конец доказательства.

Из теоремы Абеля что если степенной сходится в он сходится в точке удовлетворяющей неравенству :

Рис. 1

Если расходится в точке , тогда он расходится

Вывод: существует интервал с центром в точке 0, радиусом R, внутри которого степенной ряд сходится, и вне которого расходится. Такой интервал называется интервалом сходимости степенного ряда, а R - радиусом сходимости степенного ряда. Укажем метод нахождения интервала сходимости.

5. Метод нахождения интервала сходимости степенного ряда

1) Дан , фиксируем х, получаем числовой ряд, и применим к ряду из модулей (для знакоположительности) признак Даламбера.

2) По признаку Даламбера вычисляем

- чтобы ряд сходился по признаку Даламбера.

3) Рассмотрим неравенство

<1|:

- интервал сходимости.

4) На концах интервала сходимости, в точках и нужно провести дополнительное исследование.

Замечание: Частным случаем может оказаться, что , тогда интервал сходимости вырождается в точку х=0 точка сходимости. степенной ряд сходится на всей числовой оси и интервал сходимости

Примеры:

1)

2)

3)

4)

6. Равномерная сходимость степенного ряда

Теорема: равномерно сходится на любом отрезке от целиком лежащем внутри интервала сходимости.

Доказательство:

Степенной ряд сходится в точке сходится числовой ряд

Возьмем степенной ряд мажорируется на сходящимся числовым рядом по признаку Вейерштрасса о равномерной сходимости степенного ряда, равномерно сходится на

Конец доказательства.

Следствия:

1) Т.к. члены степенного ряда являются непрерывными функциями, то внутри интервала сходимости сумма ряда тоже будет тоже непрерывной функцией.

2) Степенной ряд можно почленно интегрировать на любом лежащем внутри интервала сходимости.

3) Степенной ряд можно почленно дифференцировать внутри интервала сходимости, т.к. интервал сходимости ряда из производных будет точно таким же.

Доказательство:

- степенной ряд.

- ряд из производных.

<1 у ряда из производных тот же интервал сходимости.

Конец доказательства.

7. Степенной ряд по степеням х-а

Рассмотрим

Сделаем замену: x-a=X

Найдём интервал сходимости полученного ряда, -R<x<R, сделаем обратную замену: -R<x-a<R|+a, a-R<x<a+R

Интервал сходимости полученного ряда имеет центр в точке А.

Пример:

8. Ряды Тейлора

На I курсе рассматривалась формула Тейлора для функции f(x) n+1 раз дифференцируемая в окрестности точки .

Если f(x) любое число раз дифференцируема в окрестности точки переходя к пределу в формуле Тейлора получим:

ряд стоящий в правой части равенства называется рядом Тейлора для функции f(x) по степеням , а сама формула называется разложением функции f(x) в ряд Тейлора.

Формально ряд Тейлора может быть получен для любой функции, но сходится к этой функции он будет только тогда, когда

Если этот предел , то ряд либо расходится, либо сходится к совсем другой функции.

9. Единственность разложения функции в ряд Тейлора

Теорема: Если функция f(x) разлагается в степенной ряд по степеням , то это обязательно ряд Тейлора.

Доказательство:

Пусть функция разлагается в степенной ряд вида:

Найдём коэффициенты степенного ряда, Подставим

Продифференцируем 1 раз

Подставим

Продифференцируем 2 раз

Подставим

Продифференцируем 3 раз

Подставим

Аналогично покажем

Коэффициенты степенного ряда совпадают с коэффициентами рядами Тейлора.

Конец доказательства.

10. Условия разложимости функции в ряд Тейлора

Определение: Семейство функций называется равномерно ограниченным на множестве D, если существует число M>0, что сразу для всех функций семейства и любого .

Теорема: Пусть функция -любое количество раз дифференцируема в окрестности точки и семейство ее производных любого порядка равномерно ограничено в окрестности точки ,то функцию можно разложить в ряд Тэйлора в окрестности точки .

Покажем что

Остаточный член

, где M>0 (т.к семейство производных равномерно ограничено)

Рассмотрим

Можно показать по признаку Даламбера, что ряд сходится при любом х.

По необходимому признаку сходимости

Рассмотрим

Конец доказательства.

11. Ряды Маклорена

Если в ряде Тейлора , то получим ряд Маклорена по степеням х.

Остаточный член

Получим разложение некоторых элементарных функций в ряд Маклорена и найдём интервалы сходимости этих рядов.

Интервал сходимости этого ряда найдем непосредственно по признаку Даламбера.

Интервал сходимости

При любом х ряд сходится по признаку Даламбера.

- интервал сходимости.

т.к семейство производных любого порядка равномерно ограничено при интервал сходимости

- интервал сходимости.

Биномиальное разложение

- интервал сходимости.

f(x)=ln(1+x)

Воспользуемся предыдущим биномиальным разложением:

проинтегрируем почленно на отрезке

снимем модуль, т.к. 1+х>0

- можно показать.

f(x)=arctgx

воспользуемся биномиальным разложением и заменим

проинтегрируем на

12. Приближенное вычисление с помощью рядов Тейлора и Маклорена

С помощью рядов Тейлора и Маклорена можно приближенно вычислять значения функций. Для этого функцию раскладывают в степенной ряд Тейлора и заменяем сумму ряда его частичной суммой. Возникающую при этом погрешность (остаточный член) оценивают следующим образом:

1) если ряд знакочередующийся, то последствию из теоремы Лейбница, для знакочередующихся рядов, остаточный член не превосходит модуля 1 отбрасываемого члена.

2) если ряд знакоположительный, то остаточный член оценивается непосредственно.

Примеры:

1)

2)

3)

13. Тригонометрические ряды Фурье

Тригонометрическим рядом Фурье для функции f(x) на интервале от называется ряд вида:

,

Условия разложимости:

Пусть f(x):

1) Периодическая с

2) Кусочномонотонна

3) Ограничена на функцию f(x) можно разложить в ряд Фурье на , который сходится к этой функции во всех точках непрерывности, в точках разрыва сумма ряда равна полусумме левого и правого предела функции.

Замечание: Основная трудность построения рядов Фурье в вычислении интегралов.

Пример:

Разложить функцию f(x)=x на в тригонометрический ряд Фурье, сделать чертеж.

14. Тригонометрический ряд Фурье от четных и нечетных функций и на интервале

Если f(x) - четная

- ряд Фурье по косинусам.

Если f(x) - нечетная

- ряд Фурье по синусам.

Если функция f(x) определена на интервале ее нужно продолжить (доопределить) на интервал и только потом построить ряд Фурье. Продолжение функции на интервал должно быть естественным, лучшее продолжение - четное или нечетное.

Рис. 2 Четное продолжение

Рис. 3 Нечетное продолжение:

Пример:

Разложить функцию f(x)=1 на в тригонометрический ряд Фурье продолжив её на нечетным образом.

15. Тригонометрический ряд Фурье на интервале

Пусть f(x) определена на и период

Замена: определена на и с периодом и ее можно разложить в тригонометрический ряд Фурье :

, где

Замена:

Таблица 1

t

x

- тригонометрический ряд Фурье по на

Условия разложимости функции в ряд Фурье на интервале аналогично условиям на интервале

Пример:

f(x)=2x+3 разложить в ряд Фурье

Ряды Фурье на интервале

Если f(x) кусочно-монотонна и ограничена на интервале , то её нужно продолжить на интервал либо чётным, либо нечётным образом.

Для чётного продолжения:

Для нечетного продолжения:

Размещено на Allbest.ru


Подобные документы

  • Определение степенного ряда. Теорема Абеля как определение структуры области сходимости степенного ряда. Свойства степенных рядов. Ряды Тейлора, Маклорена для функций. Разложение некоторых элементарных функций в ряд Маклорена. Приложения степенных рядов.

    реферат [89,3 K], добавлен 08.06.2010

  • Исследование сходимости числового ряда. Использование признака Даламбера. Исследование на сходимость знакочередующегося ряда. Сходимость рядов по признаку Лейбница. Определение области сходимости степенного ряда. Сходимость ряда на концах интервала.

    контрольная работа [131,9 K], добавлен 14.12.2012

  • Понятие и особенности определения функциональных рядов. Специфика выражения радиуса сходимости степенного ряда через его коэффициенты. Способы нахождения его области и интервала сходимости. Логический ход математического доказательства теоремы Абеля.

    презентация [86,5 K], добавлен 18.09.2013

  • Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.

    методичка [514,1 K], добавлен 26.06.2010

  • Определение числового ряда, его основные свойства. Ряды геометрической прогрессии. Исследование на сходимость гармонического ряда. Ряды с положительными членами. Признаки сходимости. Знакочередующиеся и знакопеременные ряды. Признак сходимости Лейбница.

    лекция [137,2 K], добавлен 27.05.2010

  • Описание признака сходимости числовых рядов Даламбера, решение задач на исследование сходимости. Формулировка радикального признака сходимости Коши знакоположительного ряда в предельной форме. Доказательство знакочередующихся и знакопеременных рядов.

    реферат [190,9 K], добавлен 06.12.2010

  • Интервал сходимости степенного ряда, исследование его сходимости на концах этого интервала. Решение дифференциальных уравнений и частных решений, удовлетворяющих начальному условию. Нахождение неопределенных интегралов методом замены переменных.

    контрольная работа [72,2 K], добавлен 08.04.2013

  • Определение интервала сходимости ряда. Сходимость ряда на концах интервала по второму признаку сравнения положительных рядов и по признаку Лейбница. Решение дифференциальных уравнений по методу Бернулли. Методы нахождения неопределённого интеграла.

    контрольная работа [73,0 K], добавлен 24.04.2013

  • Разложение в ряд Фурье. Определение функции и нахождение коэффициентов разложения. Проведение замены в интеграле. Условия теоремы о разложении функции в ряд Фурье. Примеры взятия интеграла по частям. Разложение в ряд Фурье четных и нечетных функций.

    презентация [73,1 K], добавлен 18.09.2013

  • Решение неравенств и определение области сходимости рядов по признаку Даламбера и теореме Лейбница для знакопеременных рядов. Условия и пределы сходимости ряда. Исследование границ интервала. Проверка условия Лейбница при знакочередующемся ряде.

    контрольная работа [127,2 K], добавлен 07.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.