Основи теорії ймовірностей
Основні поняття теорії ймовірностей. Види випадкових подій. Статистичне означення ймовірності. Найпростіші теореми теорії ймовірностей. Закон Пуасcона або закон рідкісних подій. Математичне сподівання та характеристики дискретної випадкової величини.
Рубрика | Математика |
Вид | реферат |
Язык | украинский |
Дата добавления | 19.07.2017 |
Размер файла | 139,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1
Основи теорії ймовірностей
Теорія ймовірностей складає основу математичної статистики як головного методу обробки результатів медико-біологічних досліджень. Теорія ймовірностей вивчає властивості масових випадкових подій, які можуть багаторазово повторюватись при виконанні певного комплексу умов.
Розглянемо основні поняття теорії ймовірностей.
Випробуванням називають здійснення деякого комплексу умов, який може бути повторений як завгодно велике число разів.
Результат випробування називається подією. Тобто подією називають явище, яке може відбуватись при наявності певного комплексу умов. Події позначаються великими буквами латинського алфавіту А, В, С, … .
Подію називають достовірною, якщо вона обов'язково відбудеться при наявності певного комплексу умов.
Неможливою називають подію, яка при заданому комплексі умов ніколи не відбудеться.
Випадковою називають подію, яка при заданому комплексі умов може як відбутись, так і не відбутись, тобто за певних умов ми не можемо гарантувати, що дана подія точно відбудеться, або дана подія точно не відбудеться.
Теорія ймовірностей вивчає випадкові події.
Види випадкових подій.
Дві події називаються сумісними, якщо поява однієї з них не виключає можливість появи іншої в одному і тому ж випробуванні.
Дві події називаються несумісними, якщо поява однієї з них в резульаті випробування виключає повністю можливість появи іншої в тому ж випробуванні.
Випадкові події утворюють повну групу, якщо в кожному випробуванні може наступити одна з них і не може відбутись подія несумісна з ними.
Події називаються елементарними, якщо вони утворюють повну групу попарно несумісних і рівноможливих подій.
Кожній події притаманна особлива числова міра об'єктивної можливості її появи - так звана ймовірність події.
Ймовірність появи події А позначають Р(А).
Класичне означення ймовірності випадкової події.
Ймовірністю події А називають відношення числа m елементарних подій, сприятливих події А, до числа n всіх можливих елементарних подій, тобто:
ймовірність теорема дискретний
Наприклад, в кошику знаходиться n = 15 кульок, із них m1 = 5 білих і m2 = 10 чорних. Добувають випадково одну кульку з кошика.
Нехай : подія А - це поява білої кульки;
В - це поява чорної кульки .
Властивості ймовірностей
1. Оскільки 0 m n, то 0 Р(А) 1.
2. Ймовірність достовірної події дорівнює одиниці. Для достовірної події U m n.
3. Ймовірність неможливої події дорівнює нулю. Для неможливої події V m = 0.
Відносна частота появи події.
Якщо в n випробуваннях, проведених при рівних умовах, подія А мала місце (відбулась) m разів, то відношення називають відносною частотою появи події F(A) тобто:
Відносна частота появи події залежить від кількості проведених випробувань. При збільшенні кількості випробувань відносна частота появи події коливається навколо деякого середнього значення, яке називають ймовірністю події.
Ймовірністю події А називають границю, до якої прямує відносна частота появи події при необмеженому збільшенні кількості випробувань.
Размещено на http://www.allbest.ru/
1
При великій кількості випробувань або спостережень проведених при однакових умовах ймовірність події вважається рівною відносній частоті появи події:
Наприклад, при медичному обстеженні n = 300 студентів 1 курсу мед.університету виявлено:
m1 = 30 студентів з недоліками зору (подія А);
m2 = 20 студентів , що мають гастрит (подія В);
m3 = 10 студентів , що мають хронічний гепатит (подія С) і т.д.
Тоді
і т.д.
Найпростіші теореми теорії ймовірностей
Теорема додавання ймовірностей для несумісних подій.
Ймовірність появи однієї із двох несумісних подій А і В дорівнює сумі ймовірностей випадкових подій:
Р(А+В) = Р(А) + Р(В);
Р(А або В) = Р(А)+ Р(В).
Як наслідок, сума ймовірностей несумісних подій А1, А2, … , Аn , які утворюють повну групу подій, дорівнює одиниці, оскільки поява однієї із них (будь-якої) є достовірною подією:
(Умова нормування).
Дві події називають протилежними, якщо вони несумісні і утворюють повну групу.
До події А протилежну подію позначають . Тоді
.
Якщо позначити
а , то
або q =1 - p.
Теорема множення ймовірностей для незалежних подій
Дві події А і В називаються незалежними, якщо ймовірність появи події А не залежить від того відбулась чи не відбулась подія В.
Ймовірність спільної появи (добутку) двох незалежних подій А і В дорівнює добутку ймовірностей даних подій , тобто
Як один із наслідків, ймовірність появи хоча б однієї події A із сукупності незалежних подій А1 , А2 , … , Аn визначається за формулою:
- протилежна до Аі подія.
Теорема множення ймовірностей для залежних подій
Подія В називається залежною від події А, якщо ймовірність події В залежить від того, відбулась чи ні подія А. Умовна ймовірність події В при умові, що подія А відбулась, позначається Р(В/А).
Ймовірність спільної появи (добутку) двох залежних подій А і В дорівнює добутку ймовірності однієї із них на умовну ймовірність іншої при умові, що перша подія відбулась, тобто
.
З іншої сторони
Так як
Повторні незалежні випробування.
При повторних незалежних випробуваннях, в яких ймовірність появи події А залишається сталою, користуються формулою Бернуллі.
Ймовірність того, що в n незалежних повторних випробуванях подія А буде мати місце m разів (m n), визначається формулою Бернуллі:
( закон Бернуллі),
p - ймовірність появи події А в одному випробуванні;
q = 1 - р.
При великій кількості повторних випробувань користуватись формулою Бернуллі не зручно, так як розрахунки стають громіздкими. В таких випадках користуються асимптотичними формулами, які дають достатньо точні результати.
За теоремою Муавра-Лапласа для великої кількості незалежних повторних випробувань:
Функцїя ц (х) парна, тобто ц (-х) = ц(х) .
Значення функції ц(х) для додатніх значень аргумента х приведені в таблиці (Лобоцька , додаток 1).
При великих n (n~102-103) і малих p (р<<1) користуються асимптотичною формулою Пуасcона:
де µ = np і повинно бути меншим або рівним 10.
Дане співвідношення в літературі часто називають законом Пуасcона або законом рідкісних подій.
Для великих значень µ рекомендується користуватись теоремою Муавра-Лапласа.
Випадковою величиною називають змінну величину, яка може приймати, в залежності від випадкового збігу обставин, ті чи інші числові значення з певними ймовірностями.
Випадкова величина в результаті одного випробування (спостереження, вимірювання) прийме одне із можливих значень.
Приклади випадкових величин є: тривалість життя людини, кількість хворих на диспансерному обліку, вміст гемоглобіну в крові хворого та багато інших показників.
Випадкові величини позначають великими буквами латинського алфавіту X , Y , Z , … , а їх можливі значення x, y, z, … або х1 , х2 , … .
Ймовірність значень випадкової величини позначають:
Р (Х = х1) = Р (х1) = p1 і т.д
Всі випадкові велчини поділяють на дискретні і неперервні.
Дискретною називають випадкову величину, яка приймає окремі можливі значення (значення, які можна пронумерувати) з певними ймовірностями.
Число можливих значень випадкової дискретної величини може бути скінченим або нескінченим.
Дискретні випадкові величини можуть мати чисельні значення, як цілі так і дробові, як додатні так і від'ємні. На практиці часто приходиться мати справу з дискретними випадковими величинами, які приймають лише цілі додатні значення. Наприклад, кількість хворих в районній лікарні з тим або іншим захворюванням, кількість викликів швидкої допомоги за добу і т.п.
Неперервною називають випадкову величину, яка може приймати довільні значення із деякого скінченого або нескінченого інтервалу.
Число можливих значень неперервної випадкової величини завжди нескінчене, її значення неможливо пронумерувати.
Наприклад, температура тіла людини під час інфекційного захворювання, маса людини в тому чи іншому віці і т.т.
Характеристики дискретної випадкової величини
Дискретна випадкова величина Х вважається заданою, якщо вказані всі її можливі значення і ймовірності, з якими вона може приймати дані значення.
Законом розподілу дискретної величини називають відповідність між її можливими значеннями і їх ймовірностями.
Таку відповідність задають у вигляді таблиці.
Х |
х1 |
х2 |
… |
хі |
… |
хn |
|
p |
p1 |
p2 |
… |
pі |
… |
pn |
Так як в результаті одного випробування випадкова величина Х завжди приймає одне із всіх можливих значень х1 , х2 , … , хn , то випадкові події Х = х1 , Х = х2 , … , Х = хn утворюють повну групу подій і :
(умова нормування закону розподілу)
Поряд із законом розподілу випадкову величину описують числовими характеристиками: 1) математичним сподіванням; 2) модою; 3) дисперсією;
4) середнім квадратичним відхиленням.
Математичним сподіванням дискретної випадкової величини Х називають суму добутків всіх можливих значень величини Х на їх ймовірності.
Математичне сподівання позначають М (Х) або µ :
Математичне сподівання наближено рівне середньому арифметичному значенню випадкової величини визначається за результатами серії випробувань:
Причому, така рівність тим точніша, чим більше число n проведених випробувань, спостережень або вимірювань.
В граничному випадку виконується рівність:
де n кількість випробувань.
Математичне сподівання випадкової величини Х називають центром розподілу.
Близькою до математичного сподівання є мода як числова характеристика випадкової величини.
Модою Мо дискретної випадкової величини називають таке значення xm випадкової величини, що попереднє і наступне за ним значення мають ймовірності, менші від Р(xm).
Розподіли випадкових величин можуть мати одну, дві або більше мод.
В медико-біологічних дослідженнях часто знаходять не математичне сподівання, а моду. В медицині, наприклад, знання середнього віку дітей, що хворіють ангіною, менше цікаве, ніж знання віку, в якому частіше всього спостерігається захворювання.
Розсіювання відхилень значень випадкової величини відносно математичного сподівання характеризують дисперсія і середнє квадратичне відхилення.
Дисперсією дискретної випадкової величини називають математичне сподівання квадрату різниці значення випадкової величини Х і її математичного сподівання м.
Дисперсію позначають D(X):
Використовуючи властивості математичного сподівання можна показати, що:
Дисперсія має розмірність квадрату випадкової величини.
Середнім квадратичним відхиленням випадкової величини називають корень квадратний із її дисперсії:
Х |
1 |
2 |
3 |
4 |
5 |
|
р |
0,15 |
0,3 |
0,4 |
0,1 |
0,05 |
Умова нормування:
1. Математичне сподівання:
2. Мода: М0(Х) = 3.
3. Дисперсія:
4. Середнє квадратичне відхилення:
Якщо дискретна випадкова величина Х - число появи події А в n незалежних повторних випробуваннях. Причому в кожному випробуванні то величина Х підлягає розподілу Бернуллі
Числові характеристики величини Х:
Якщо число незалежних повторних випробувань n велике, а p<<1, q =
=1 - p ? 1, то користуються розподілом Пуассона
При цьому числові характеристики величини Х визначаються за формулами:
Характеристики неперервної випадкової величини.
Ймовірність ДР того, що неперервна випадкова величина Х приймає значення в інтервалі (х, х +Дх) прямо пропорційна ширині інтервалу Дх:
ДP = ѓ(x)Дx,
де f(x) - коефіцієнт пропорційності, який називають функцією щільності густини розподілу ймовірності або щільністю густиною ймовірності:
.
Для безмежно малого інтервалу:
dP= ѓ (x)dx; .
Функція щільності густини ймовірності значень неперервної випадкової величини є аналогом закону розподілу для дискретної випадкової величини.
Функція щільності густини ймовірності має властивості:
ѓ(x) ? 0 при - ? < x < +?, ѓ (- ?) = 0, ѓ (+ ?) = 0.
де - функція розподілу випадкової величини Х.
F(x) = P(X<x). Так як 0 ? Р ? 1, то 0 ? F(х) ?1.
3. Умова нормування для щільності густини ймовірності як наслідок властивості №2.
Площа під графіком функції f(x) повинна дорівнювати одиниці.
Числові характеристики неперервної випадкової величини Х
Математичне сподівання неперервної випадкової величини Х:
де f(x) - густина ймовірності.
Дисперсія неперервної випадкової величини Х:
Середнє квадратичне відхилення:
Більшість неперервних випадкових величин в природі розподілені за так званим нормальним законом розподілу (законом Гауса).
Закон розподілу неперервної випадкової величини Х вважається нормальним, якщо густина ймовірності її значень має вигляд:
де х - значення випадкової величини;
у - середнє квадратичне відхилення;
м - математичне сподівання або центр розподілу.
Графік функції f(x) називають нормальною кривою розподілу або кривою Гауса.
В точці А, в якій х = м, функція має максимум:
Точки В і С, для яких х = м -у і х = м +у відповідно , є точками перегину.
Нормальний розподіл залежить від параметрів м і у .
Нормальний розподіл з параметрами: м=0 і у=1, називають нормованими або стандартними.
При цьому:
Функція розподілу для нормально розподіленої випадкової величини Х:
Функція розподілу для нормованої випадкової величини:
Функції F(x) і Ф(u) є тотожніми, тобто
F(x) = Ф(u).
Функція Ф(u) має таку властивість:
Ф(u)+Ф(-u) = 1,
Для додатніх значень u складена таблиця значень функції розподілу Ф(u).
Ймовірність попадання нормально розподіленої випадкової вклични Х в заданий інтервал (х1 , х2) визначаеться співвідношенням :
P(x1<X<x2) = Ф(u2)-Ф(u1),
Підрахуємо ймовірність попадання нормально розподіленої випадкової величини Х в інтервали:
(м - у , м +у) ;
(м - 2у , м + 2у) ;
(м - 3у , м + 3у) .
Користуючись попередніми співвідношеннями і таблицею значень функції
Ф(u), отримаємо:
1)
2)
3)
Тобто, ймовірність попадання нормально розподіленої неперервної випадкової величини в інтервалі відповідно дорівнюють:
м у, Р1 = 0,68;
м 2у, Р2 = 0,95;
м 3у, Р3 = 0,997;
З останнього випливає, що неперервна випадкова величина Х, яка розподілена за нормальним законом, з ймовірністю Р = 0,997 приймає значення в інтервалі м±3у, тобто значення випадкової величини практично не виходять за інтервал м±3у. (Правило “3у”) . Графічно це означає:
Інші закони розподілу неперервних величин
Розподіл Максвелла визначає густину ймовірності для модуля швидкості v молекул газу.
де m0 - маса молекули; k- стала Больцмана; Т - абсолютна температура газу.
Розподіл Больцмана визначає густину ймовірності знаходження молекули газу в однорідному гравітаційному полі.
Іноді розподілом Больцмана називають залежність концентрації молекул газу (повітря) від висоти h.
де n0 - концентрація молекул газу на висоті h = 0.
Література
Лобоцкая Н.Л., и др. Высшая математика. - Минск: Вышэйшая школа, 1987. С. 132-171.
О.П. Минцер, Б.Н.Угаров, В.В.Власов. Методы обработки медицинской информации. К.: «Выща школа», 1991. С. 9-31.
Размещено на Allbest.ru
Подобные документы
Основні поняття теорії ймовірностей, означення випробування, випадкової, масової, вірогідної та неможливої події. Правило суми і множення. Теорема додавання і теорема добутку ймовірностей. Використання геометричної ймовірності, Парадокс Бертрана.
научная работа [139,9 K], добавлен 28.04.2013Основні поняття теорії ймовірності. Аналіз дискретної випадкової величини, характеристика закону розподілу випадкової величини. Знайомство з властивостями функції розподілу. Графічне та аналітичне відображення законів ймовірності дискретних величин.
реферат [134,7 K], добавлен 27.02.2012Основні напрямки теорії ймовірностей. Сутність понять "подія", "ймовірність події". Перестановки, розміщення та сполучення. Безпосередній підрахунок ймовірностей. Основні теореми додавання та множення ймовірностей. Формула повної ймовірності та Байєса.
контрольная работа [89,9 K], добавлен 27.03.2011Вивчення закономірностей, властивих випадковим явищам. Комплекс заданих умов. Експериментальна перевірка випадкових явищ в однотипних умовах та необмежену кількість разів. Алгебра випадкових подій. Сутність, частота і ймовірність випадкової події.
реферат [151,8 K], добавлен 16.02.2011Оцінка ймовірності відхилення випадкової величини Х від її математичного сподівання. Знаходження дисперсії випадкової величини за допомогою теореми Бернуллі. Застосування для випадкової величини нерівності Чебишова. Суть центральної граничної теореми.
реферат [88,5 K], добавлен 02.02.2010Предмет теорії ймовірностей. Означення та властивості імовірності та частості. Поняття та принципи комбінаторики. Формули повної імовірності та Байєса. Схема та формула Бернуллі. Проста течія подій. Послідовність випробувань з різними ймовірностями.
курс лекций [328,9 K], добавлен 18.02.2012Властивості числових характеристик системи випадкових величин. Обчислення кореляційного моменту. Ведення комплексної випадкової величини, характеристичні функції. Види збіжності випадкових величин. Приклади доказів граничних теорем теорії ймовірностей.
реферат [113,9 K], добавлен 12.03.2011Визначення кількості сполучень при дослідженні ймовірностей. Закон розподілу випадкової величини. Функція розподілу, знаходження середнього квадратичного відхилення. Визначення щільності розподілу ймовірностей. Закон неперервної випадкової величини.
контрольная работа [71,3 K], добавлен 13.03.2015Основні принципи і елементи комбінаторики. Теорія ймовірностей: закономірності масових випадкових подій, дослідження і узагальнення статистичних даних, здійснення математичного і статистичного аналізу. Постановка і вирішення задач економічного характеру.
курс лекций [5,5 M], добавлен 21.11.2010Етапи розвитку теорії ймовірностей як науки. Ігри казино як предмет математичного аналізу. Біологічна мінливість і імовірність. Застосування розподілів ймовірностей як спосіб опису біологічної мінливості. Помилкова точність та правила округлення чисел.
реферат [26,4 K], добавлен 27.02.2011