Алгебра. Основи алгебраїчних структур
Побудова поля комплексних чисел. Асоціативність, комутативність та дистрибутивність бінарних операцій. Еквівалентні перетворення системи векторів. Обчислення оберненої матриці елементарними перетвореннями. Критерій сумісності системи лінійних рівнянь.
Рубрика | Математика |
Вид | учебное пособие |
Язык | украинский |
Дата добавления | 16.07.2017 |
Размер файла | 516,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Розв’язання систем лінійних рівнянь методом Жордана-Гауса. Еквівалентні перетворення системи, їх виконання як елемент методів розв’язування системи рівнянь. Базисні та вільні змінні. Лінійна та фундаментальна комбінації розв’язків, таблиці коефіцієнтів.
контрольная работа [170,2 K], добавлен 16.05.2010Визначення системи лінійних рівнянь та її розв’язання. Поняття рангу матриці, правило Крамера та види перетворень з матрицею. Способи знайдення оберненої матриці А–1 до невиродженої матриці А. Контрольні запитання та приклади розв’язування задач.
задача [73,5 K], добавлен 25.03.2011Дослідження системи лінійних алгебраїчних рівнянь на стійкість. Одержання характеристичного многочлена методом Левур’є, в основу якого покладено обчислювання слідів степенів матриці А. Приклад перевірки на стійкість систему Аx=B за допомогою програми.
курсовая работа [33,0 K], добавлен 29.08.2010Огляд складання програми на мові програмування С++ для обчислення чотирьох лінійної системи рівнянь матричним методом. Обчислення алгебраїчних доповнень до елементів матриці. Аналіз ітераційних методів, заснованих на використанні повторюваного процесу.
практическая работа [422,7 K], добавлен 28.05.2012Основні поняття чисельних методів розв’язання систем лінійних алгебраїчних рівнянь. Алгоритм Гаусса зведення системи до східчастого виду послідовним застосуванням елементарних перетворень. Зворотній хід методу Жордана-Гаусса. Метод оберненої матриці.
курсовая работа [165,1 K], добавлен 18.06.2015Сумісність лінійних алгебраїчних рівнянь. Найвищий порядок відмінних від нуля мінорів матриці. Детермінант квадратної матриці. Фундаментальна система розв’язків та загальний розв'язок системи лінійних однорідних рівнянь. Приклади розв’язання завдань.
курсовая работа [86,0 K], добавлен 15.09.2008Системи лінійних алгебраїчних рівнянь, головні означення. Коротка характеристика головних особливостей матричного способу, методу Жордано-Гаусса. Формули Крамера, теорема Кронекера-Капеллі. Практичний приклад розв’язання однорідної системи рівнянь.
курсовая работа [690,9 K], добавлен 25.04.2013Запис системи рівнянь та їх розв'язання за допомогою методів оберненої матриці та Гауса. Поняття вектора-стовпця з невідомих та вільних членів. Пошук оберненої матриці до даної. Послідовне виключення невідомих за допомогою елементарних перетворень.
контрольная работа [115,2 K], добавлен 16.07.2010Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.
реферат [543,7 K], добавлен 23.04.2015Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.
курсовая работа [378,9 K], добавлен 26.12.2010