Основи нарисної геометрії

Основні методи відображення формоутворюючих елементів простору – точок, прямих, площин, методи геометричного моделювання, а також складних фігур – багатогранників, кривих поверхонь. Методи розв’язання на графічних моделях метричних та позиційних задач.

Рубрика Математика
Вид учебное пособие
Язык украинский
Дата добавления 07.07.2017
Размер файла 6,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Поняття і сутність нарисної геометрії. Геометричні фігури як формоутворюючі елементи простору. Розв'язання метричних задач шляхом заміни площин проекцій. Плоскопаралельне переміщення та обертання навколо ліній рівня. Косокутне допоміжне проектування.

    контрольная работа [324,9 K], добавлен 03.02.2009

  • Історія виникнення відсотків, сутність цього терміна. Розв’язання задач на їх визначення за допомогою пропорцій. Добірка текстових завдань, які розв’язуються шляхом розрахунку розміру складних відсотків. Методи вирішення задач на суміші та сплави.

    реферат [72,7 K], добавлен 02.12.2015

  • Етапи розв'язування інженерних задач на ЕОМ. Цілі, засоби й методи моделювання. Створення математичної моделі. Побудова обчислювальної моделі. Реалізація методу обчислень. Розв’язання нелінійних рівнянь методом дихотомії. Алгоритм метода дихотомії.

    контрольная работа [86,1 K], добавлен 06.08.2010

  • Площина як одне з основних понять геометрії, її розміщення у просторі. Поняття взаємно перпендикулярних площин. Огляд прикладів вирішення задачі на побудову двох паралельних площин. Теореми, що використовуються при розв’язанні позиційних задач на цю тему.

    контрольная работа [451,5 K], добавлен 19.11.2014

  • Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.

    курсовая работа [515,3 K], добавлен 29.06.2011

  • Сутність і предмет вивчення нарисної геометрії, історія її зародження та розвитку як науки, яскраві представники. Методи проекцій точки та прямої, види та властивості проеціювання. Головні лінії площини. Відображення та проеціювання точок на площинах.

    курсовая работа [1,7 M], добавлен 13.11.2009

  • Методи скінченних різниць або методи сіток як чисельні методи розв'язку інтегро-диференціальних рівнянь алгебри диференціального та інтегрального числення. порядок розв’язання задачі Діріхле для рівняння Лапласа методом сіток у прямокутної області.

    курсовая работа [236,5 K], добавлен 11.06.2015

  • Ознайомлення із формулюваннями задач на побудову; застосування методів геометричного місця точок, центральної та осьової симетрії, паралельного переносу та повороту для їх розв'язання. Правила побудови шуканих фігур за допомогою циркуля і лінійки.

    курсовая работа [361,7 K], добавлен 04.12.2011

  • Поняття та методика визначення геометричного місця точки на площині. Правила та головні етапи процесу застосування даного математичного параметру до розв’язання задач на побудову. Вивчення прикладів задач на відшукання геометричного місця точки.

    курсовая работа [1,4 M], добавлен 12.06.2011

  • Огляд проблеми дискретного логарифмування в групі точок еліптичної кривої. Сутність та сфера використання методу Поліга-Хелмана. Особливості використання методу ділення точок на два. Можливі підходи і приклади розв’язання задач дискретного логарифмування.

    реферат [112,8 K], добавлен 09.02.2011

  • Максимуми і мінімуми в природі (оптика). Завдання на оптимізацію. Варіаційні методи розв’язання екстремальних задач. Найбільш відомі екстремальні задачі в геометрії: задача Дідони, Евкліда, Архімеда, Фаньяно, Ферма-Торрічеллі-Штейнера та Штейнера.

    курсовая работа [1,1 M], добавлен 12.09.2014

  • Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.

    отчет по практике [143,9 K], добавлен 02.03.2010

  • Методика викладання теми, що стосується графічних методів розв’язування задач з параметрами. Обережне відношення до фіксованого, але невідомого числа при роботі з параметром. Побудова графічного образу на координатній площині, застосування похідної.

    дипломная работа [7,5 M], добавлен 20.08.2010

  • Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.

    курсовая работа [419,2 K], добавлен 29.08.2010

  • Основні поняття поворотної симетрії. Означення, задання та властивості повороту площини. Формула повороту площини в координатах. Поворотна симетрія в природі. Розв'язання задач з геометрії за допомогою повороту (на обчислення, на побудову, на доведення).

    курсовая работа [2,6 M], добавлен 02.11.2013

  • Історія розвитку математичної науки. Математичне моделювання і дослідження процесів і явищ за допомогою функцій, рівнянь та інших математичних об`єктів. Функції, їх основні властивості та графіки, множина раціональних чисел. Розв`язання типових задач.

    книга [721,3 K], добавлен 01.03.2011

  • Проблема формування конструктивно-геометричних умінь та навичок учнів в старшій профільній школі. Поняття геометричних побудов; паралельне і центральне проектування та їх властивості. Основні типи задач в стереометрії та методи їх розв’язування.

    дипломная работа [2,6 M], добавлен 11.02.2014

  • Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.

    контрольная работа [67,1 K], добавлен 27.03.2012

  • Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.

    курсовая работа [605,9 K], добавлен 29.04.2014

  • Чисельні методи розв’язання систем нелінійних рівнянь: лінійні і нелінійні рівняння, метод простих ітерацій, метод Ньютона. Практичне використання методів та особливості розв’язання систем нелінійних рівнянь у пакеті Mathcad, Excel та на мові С++.

    курсовая работа [2,0 M], добавлен 30.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.