Закономерность распределения простых чисел в ряду натуральных чисел
Исследование роли простых чисел в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Определение закономерность распределения простых чисел в ряду натуральных чисел. Составление системы комбинаций арифметических прогрессий.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 30.03.2017 |
Размер файла | 640,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Закономерность распределения простых чисел в ряду натуральных чисел.
Белотелов В.А.
г. Заволжье 2008г.
Простые числа? - Это просто
Узнав о важной роли простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании и о том, что нужна закономерность распределения ПЧ в ряду натуральных чисел, не являясь математиком, всё же рискнул заняться решением этой задачи. Результат ниже.
Для начала выписал ряд ПЧ. Конечно же, это было сделано с целью заметить, хоть какую бы, закономерность. С этой же целью были вычислены разности между соседними числами ряда ПЧ. Было замечено, что иногда появлялась последовательность разностей 6-4-2-4-2-4-6-2. Там, где эта последовательность нарушалась, были введены составные числа (СЧ). Результат представлен в таблице 1, СЧ в которой подчёркнуты. Числа 2, 3, 5, являясь ПЧ, из рассмотрения всё же были убраны. Это первое исключение из правил. Вторая вольность заключалась введением в рассмотрение числа 1, зная, что единица не является простым числом.
Целью же было найти закономерность среди ПЧ + СЧ, а потом уже найти закономерность среди ПЧ. Стратегия поиска закономерности ПЧ заключалась в следующей логической формуле:
(закономерность ПЧ+СЧ) - (закономерность СЧ) = закономерность ПЧ.
Из ПЧ + СЧ, представленных в таблице 1, была составлена система из восьми арифметических прогрессий. Результат представлен в таблице 2.
Разности всех восьми прогрессий равны 30 и их первые члены равны соответственно 1, 7, 11, 13, 17, 19, 23, 29, а сами ряды обозначены через R1, R7,R11, R13, R17, R19, R23, R29. СЧ, как и в таблице 1, подчёркнуты и сверху расписаны в виде произведений двух чисел. Можно сформулировать правило, по которому в любой из восьми арифметических прогрессий распределены СЧ.
Если в арифметической прогрессии, какой - либо член an можно представить в виде двух сомножителей fxp, то последующие члены этой прогрессии an+mf являются произведением fx(p+md), а члены an+kp произведением px(f+kd), где m и k любые натуральные числа, а d - разность этой прогрессии.
Данное правило не нуждается в доказательстве, т.к. фактически следует из определения арифметической прогрессии. Но для объяснения закономерности ПЧ имеет большое значение. Во - первых, оно запрещает поиск рядов ПЧ, подчиняющихся одной арифметической прогрессии, т.к. любое простое число an можно представить в виде anх1, и тогда в любом ряде через число членов an, появляется составное число anх(1+d).
Во - вторых, в любой арифметической прогрессии появление дополнительных составных чисел возможно только в сочетании с разностью именно этой прогрессии.
Это правило можно сформулировать для любого числа сомножителей, но в данном случае интерес представляет число сомножителей равное двум.
В качестве примера рассмотрим в ряде R1 четвёртый член равный 91=7х13. Ближайшим членом в ряде R1 кратным семи является число 301, отстоящее от числа 91 на семь номеров, соответственно, число 301 принадлежит ряду СЧ. Число 301 является произведением 7х43 (301=7х43), и с номера этого числа равного 11, каждое сорок третье число, тоже делится на 43 и, соответственно, принадлежит к ряду СЧ. Дальше это можно не описывать, т.к. это хорошо видно в таблице 2.
Расписав таблицу 2 в виде математических символов, удалось получить систему из восьми формул, расписанных в виде разности сумм, см. таблицу 3. Во всех восьми формулах системы, члены с рядами двойных сумм служат фильтрами, удаляющими СЧ из ряда ПЧ+СЧ, и задают работу фильтров в виде матриц. В таблице 4 изображено распределение номеров СЧ в ряде R1, определяемых вторым членом формулы. Это матрица, в которой и по столбцам и по строкам арифметические прогрессии.
В формулах индексы и обозначают столбцы и строки подобных матриц, сами же и дополнительными индексами не отягощаю. Без и описать работу матриц не смог, а формальная фраза, что в выражении под суммой произведений подразумеваются всевозможные их комбинации в зависимости от значений a1 и с1, будет неверна. Ибо все члены с номерами при >1 и >1 из формулы выпадают.
Система формул арифметических прогрессий, позволяющая вычислять ПЧ, получилась достаточно громоздкой, но закономерность обозначена.
Данная статья была подготовлена для публикации в научном журнале с математическим уклоном. Пока шёл поиск данного журнала, путём несложных умозаключений, была составлена система рядов арифметических прогрессий с разностью 10. Результат в таблице 5 и 6. Всё было расписано по образцу и подобию предыдущего материала. В таблице 7 изображена матрица для номеров второго члена формулы 1 таблицы 6.
Не начав переписывать статью заново, в связи с открытием новой системы уравнений, опять же путём размышлений, были расписаны арифметические прогрессии с разностью 2 и 1, т.е. при разности единица ПЧ были напрямую увязаны с натуральным рядом. Результат в таблице 8 и 9.
Всё расписано, как и в случаях с системами уравнений арифметических прогрессий разностей 30 и 10. И после этого наступил момент истины.
Оказалось, что подобных уравнений можно составить бесконечное множество. Это арифметические прогрессии с разностью 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 … 30 …. .
Интереса ради, расписана система арифметических прогрессий с d = 6 .
В таблице 10 изображены матрицы номеров этой системы.
Обобщающий вывод
ПЧ можно представить комбинацией арифметических прогрессий. Таких комбинаций бесконечное множество. Но каждая из комбинаций систем арифметических прогрессий позволяет только единственное представление ПЧ при заданной разности прогрессий задающей ряды ПЧ+СЧ.
Если в значения переменных двойных сумм вставить их аналитические выражения через переменные и - столбцы и строки матриц, получатся формулы самих СЧ.
Тогда формула любого члена матриц СЧ таблицы 4, примет вид (30I - 17) (30j - 23).
Аналогично для таблицы 7- (10I - 3) (10 j - 7).
Для таблицы 8, ряда нечётных чисел - (2I + 1) (2 j + 1).
Для таблицы 9, ряда натуральных чисел - (I + 1) ( j + 1).
Заостряю внимание на том факте, что это уже не номера членов СЧ в рядах ПЧ + СЧ, а численные значения этих номеров. И подобных уравнений СЧ можно составить по числу систем арифметических прогрессий, и даже значительно больше, т.е. бесконечное множество.
Для наглядности можно расписать уравнения таблицы 3 в символах и . Результат в таблице 11.
И предлагаю рассмотреть, для сравнения, формулы для вычисления составного числа 91 в различных системах арифметических прогрессий.
В системе c d = 30 число 91 - это (30- 17) (30- 23), при = 1, = 1.
В системе c d = 10 это же число - (10- 3) (10- 7), при = 2, = 1.
В системе c d = 6 - (6+ 1) (6+ 1), при = 1, = 2.
В системе c d = 4 - (4- 1) (4+ 1), при = 2, = 3.
В системе c d = 2 - (2+ 1) (2+ 1), при = 3, = 6.
В системе c d = 1 - (+ 1) (+1), при = 6, = 12.
простой число натуральный прогрессия
Приложение
Таблица 1
1 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
49 |
53 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
61 |
67 |
71 |
73 |
77 |
79 |
83 |
89 |
91 |
97 |
101 |
103 |
107 |
109 |
113 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
121 |
127 |
131 |
133 |
137 |
139 |
143 |
149 |
151 |
157 |
161 |
163 |
167 |
169 |
173 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
181 |
187 |
191 |
193 |
197 |
199 |
203 |
209 |
211 |
217 |
221 |
223 |
227 |
229 |
233 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
241 |
247 |
251 |
253 |
257 |
259 |
263 |
269 |
271 |
277 |
281 |
283 |
287 |
289 |
293 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
301 |
307 |
311 |
313 |
317 |
319 |
323 |
329 |
331 |
337 |
341 |
343 |
347 |
349 |
353 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
361 |
367 |
371 |
373 |
377 |
379 |
383 |
389 |
391 |
397 |
401 |
403 |
407 |
409 |
413 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
421 |
427 |
431 |
433 |
437 |
439 |
443 |
449 |
451 |
457 |
461 |
463 |
467 |
469 |
473 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
481 |
487 |
491 |
493 |
497 |
499 |
503 |
509 |
511 |
517 |
521 |
523 |
527 |
529 |
533 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
541 |
547 |
551 |
553 |
557 |
559 |
563 |
569 |
571 |
577 |
581 |
583 |
587 |
589 |
593 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
601 |
607 |
611 |
613 |
617 |
619 |
623 |
629 |
631 |
637 |
641 |
643 |
647 |
649 |
653 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
661 |
667 |
671 |
673 |
677 |
679 |
683 |
689 |
691 |
697 |
701 |
703 |
707 |
709 |
713 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
||||||||||||||||
721 |
727 |
731 |
733 |
737 |
739 |
743 |
749 |
751 |
757 |
761 |
763 |
767 |
769 |
773 |
||||||||||||||||
6 |
4 |
2 |
4 |
2 |
4 |
6 |
2 |
6 |
4 |
2 |
4 |
2 |
4 |
6 |
Таблица 2
Таблица 3
Таблица 4
Таблица 5
Таблица 6
Таблица 7
Размещено на Allbest.ru
Подобные документы
Важная роль простых чисел (ПЧ) в криптографии, генерации случайных чисел, навигации, имитационном моделировании. Необходимость закономерности распределения ПЧ в ряду натуральных чисел. Цель: найти закономерность среди ПЧ + СЧ, а потом закономерность среди
доклад [217,0 K], добавлен 21.01.2009Характеристика истории изучения значения простых чисел в математике путем описания способов их нахождения. Вклад Пьетро Катальди в развитие теории простых чисел. Способ Эратосфена составления таблиц простых чисел. Дружественность натуральных чисел.
контрольная работа [27,8 K], добавлен 24.12.2010Исторические факты исследования простых чисел в древности, настоящее состояние проблемы. Распределение простых чисел в натуральном ряде чисел, характер и причина их поведения. Анализ распределения простых чисел-близнецов на основе закона обратной связи.
статья [406,8 K], добавлен 28.03.2012Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.
монография [575,3 K], добавлен 28.03.2012Поиски и доказательства простоты чисел Мерсенна. Окончание простых чисел Мерсенна на цифру 1 и 7. Вопрос сужения диапазона поиска. Эффективный алгоритм Миллера-Рабина. Разделение алгоритмов на вероятностные и детерминированные. Числа джойнт ряда.
статья [127,5 K], добавлен 28.03.2012Проблема универсального генератора простых чисел. Попытки создания формул для нахождения простых чисел. Сущность теоремы сравнений. Доказательство "Малой теоремы Ферма". "Золотая теорема" о квадратичном законе взаимности. Генераторы простых чисел Эйлера.
реферат [22,8 K], добавлен 22.03.2016Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.
научная работа [20,2 K], добавлен 29.12.2006Применение способа решета Эратосфена для поиска из заданного ряда простых чисел до некоторого целого значения. Рассмотрение проблемы простых чисел-близнецов. Доказательство бесконечности простых чисел-близнецов в исходном многочлене первой степени.
контрольная работа [66,0 K], добавлен 05.10.2010Числа натурального ряда, их закономерное периодическое изменение: сведение бесконечного к конечному путем выявления периодичности. Обоснование метода поиска простых чисел с помощью "решета" Баяндина. Закон динамического сохранения относительных величин.
книга [359,0 K], добавлен 28.03.2012Свойства делимости целых чисел в алгебре. Особенности деления с остатком. Основные свойства простых и составных чисел. Признаки делимости на ряд чисел. Понятия и способы вычисления наибольшего общего делителя (НОД) и наименьшего общего кратного (НОК).
лекция [268,6 K], добавлен 07.05.2013