Умови інтегрування диференціальних рівнянь 3-го порядку зі змінними коефіцієнтами
Звичайні диференціальні рівняння зі змінними коефіцієнтами, які зводяться до рівнянь зі сталими коефіцієнтами за допомогою заміни змінної. Коливання систем зі змінними параметрами. Інтегрування в квадратурах. Точні рішення для класу лінійних рівнянь.
Рубрика | Математика |
Вид | статья |
Язык | украинский |
Дата добавления | 30.01.2017 |
Размер файла | 242,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Лінійні різницеві рівняння зі сталими коефіцієнтами. Теоретичне дослідження основних теорій інваріантних тороїдальних многовидів для зліченних систем лінійних і нелінійних різницевих рівнянь, що визначені на скінченновимірних та нескінченновимірних торах.
курсовая работа [1,3 M], добавлен 18.12.2013Класичні та сучасні наближені методи розв'язання диференціальних рівнянь та їх систем. Класифікація наближених методів розв'язування. Розв'язування трансцендентних, алгебраїчних і диференціальних рівнянь, методи чисельного інтегрування і диференціювання.
отчет по практике [143,9 K], добавлен 02.03.2010Системи лінійних рівнянь з двома змінними з параметром. Тригонометричні рівняння та системи тригонометричних рівнянь з параметрами. Лінійні та квадратні нерівності. Застосування графічних методів паралельного переносу в розв’язанні задач з параметрами.
дипломная работа [1,3 M], добавлен 16.06.2013Умова існування цілих розв’язків лінійних діофантових рівнянь, алгоритм Евкліда. Розв’язування лінійних рівнянь з двома змінними в цілих числах. Методика вивчення діофантових рівнянь в загальноосвітніх школах. Діофантові рівняння вищих порядків.
курсовая работа [758,4 K], добавлен 15.05.2019Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция [202,1 K], добавлен 30.04.2014Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.
курсовая работа [258,9 K], добавлен 27.12.2010Теоретичні основи розв’язування рівнянь з параметрами. Функція пряма пропорційність. Загальне поняття про аналітичний та графічний метод. Дробово-раціональні рівняння з параметрами, що зводяться до лінійних. Система розв’язування задач для 9 класу.
курсовая работа [596,8 K], добавлен 21.03.2013Визначення поняття "рівняння з параметрами", розгляд принципів рішення даних рівнянь на загальних випадках. Особливості методів розв'язання рівнянь із параметрами, зв'язаних із властивостями показовою, логарифмічною й тригонометричною функціями.
реферат [68,3 K], добавлен 15.02.2011Історія створення теорії алгебраїчних рівнянь. Сутність системи лінійних алгебраїчних рівнянь в лінійній алгебрі. Повна характеристика методів розв'язання рівнянь: точні, ітераційні та ймовірнісні. Особливості теорем Гауса-Жордана та Габріеля Крамера.
реферат [543,7 K], добавлен 23.04.2015Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.
контрольная работа [723,3 K], добавлен 07.01.2016Рішення основних систем лінійних рівнянь. Визначники другого та третього порядку. Властивості визначників, теорема розкладання. Теорема Крамера для систем рівнянь. Доцільність рішення задачі автоматизованим способом. Ймовірність допущення помилок.
курсовая работа [386,2 K], добавлен 18.12.2010Лінійні діофантові рівняння. Невизначені рівняння вищих порядків. Невизначене рівняння Ферма. Приклади розв’язання лінійних діофантових рівнянь та системи лінійних діофантових рівнянь. Алгоритми знаходження всіх цілочисельних розв’язків рівнянь.
курсовая работа [1,7 M], добавлен 29.12.2010Класифікація та типи чисельних методів розв’язування систем лінійних рівнянь і обернення звернення матриць точні, ітераційні та комбіновані. Їх порівняльна характеристика та умови використання в окремих випадках. Вектори та операції над ними, норми.
презентация [85,6 K], добавлен 06.02.2014Аналіз найвідоміших методів розв’язування звичайних диференціальних рівнянь і їх систем, користуючись рекомендованою літературою. Розробка відповідної схеми алгоритму. Розв’язання системи звичайних диференціальних рівнянь в за допомогою MathCAD.
лабораторная работа [412,4 K], добавлен 21.10.2014Чисельні методи рішення диференціальних рівнянь у частинних похідних 2-го порядку, початкові і крайові умови. Метод сіток та представлення часткових похідних у скінчено-різницевому вигляді. Структура похибки розв'язку задачі, стійкість і коректність.
курсовая работа [986,6 K], добавлен 22.08.2010Ознайомлення з нестандартними методами рішення рівнянь і нерівностей. Відомості з історії математики про рішення рівнянь. Розгляд та застосування на практиці методів рішення рівнянь і нерівностей, заснованих на використанні властивостей функції.
дипломная работа [1,4 M], добавлен 26.01.2011Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.
курсовая работа [605,9 K], добавлен 29.04.2014Функціональні методи рішення тригонометричних і комбінованих рівнянь. Рішення тригонометричних нерівностей графічним методом. Відомість тригонометричних рівнянь до алгебраїчних. Перетворення й об'єднання груп загальних рішень тригонометричних рівнянь.
дипломная работа [773,7 K], добавлен 25.02.2011Власні числа і побудова фундаментальної системи рішень. Однорідна лінійна система диференціальних рівнянь. Побудова фундаментальної матриці рішень методом Ейлера. Знаходження наближеного рішення у вигляді матричного ряду. Рішення неоднорідної системи.
курсовая работа [378,9 K], добавлен 26.12.2010