Криптування з використанням еліптичної кривої Едвардса
Розгляд криптографічної схеми, що використовує протокол Діффі-Геллмана, застосований до кільця Zp та групи точок еліптичної кривої Едвардса. Алгоритм, який можна використовувати для закритого зв’язку при обміні даними по мережі загального користування.
Рубрика | Математика |
Вид | статья |
Язык | украинский |
Дата добавления | 29.07.2016 |
Размер файла | 185,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Огляд проблеми дискретного логарифмування в групі точок еліптичної кривої. Сутність та сфера використання методу Поліга-Хелмана. Особливості використання методу ділення точок на два. Можливі підходи і приклади розв’язання задач дискретного логарифмування.
реферат [112,8 K], добавлен 09.02.2011Використання методу Полларда для вирішення проблеми дискретного логарифмування, його складність і час обчислення рішення ECDLP. Аномальні криві й криві над розширеннями малого поля. MOV-атака та суперсингулярні криві над полем F. Метод спуску Вейля.
реферат [269,5 K], добавлен 21.02.2011Скалярне множення або експоненціювання точки кривої у криптографічних алгоритмах. Методи вікон з алгоритмом подвоєння – додавання – віднімання. Метод еспоненціювання Монтгомері. Методи експоненціювання при фіксованій точці. Алгоритм максимальної пам'яті.
контрольная работа [130,4 K], добавлен 07.02.2011Обчислення довжини дуги для просторової кривої, що задана параметрично. Варіант розрахунку у випадку задання кривої в полярній системі координат. Формули для обчислення площі поверхні обертання. Вираз площі циліндричної поверхні через елементарні функції.
научная работа [103,7 K], добавлен 12.05.2010Методика проведення операції в розширених полях. Сліди і базиси розширеного поля. Двійкове подання елементів у поліноміальному і нормальному базисах. Подання точок кривої у різних координатних системах. Складність арифметичних операцій у групах точок ЕК.
реферат [133,7 K], добавлен 05.02.2011Поняття кільця в математиці, обов'язкові умови та основні властивості, приклади, що підтверджують несуперечливість системи аксіом кільця. Сутність ідеалу по відношенню до кільця, операції над ними. Факторіальність евклідових кілець. Кільце поліномів.
курсовая работа [123,6 K], добавлен 26.04.2010Поняття полярної системи координат, особливості завдання координат точки у ній. Формули переходу від декартової до полярної системи координат. Запис рівняння заданої кривої в декартовій системі координат з використанням вказаної формули переходу.
контрольная работа [2,4 M], добавлен 01.04.2012Загальні властивості диференціальних рівнянь Ріккаті. Прості випадки інтегрованості в квадратурах. Побудова загального розв’язку у випадку, коли відомий один частинний розв’язок. Структура загального розв’язку, коли відомо два або три частинних розв’язки.
курсовая работа [134,0 K], добавлен 22.01.2013Суть інтерполяції - у відшуканні значень функції в деякій проміжній точці. Лінійна інтерполяція, в основі якої лежить наближення кривої на ділянці між заданими точками прямою, що проходить через ті ж точки. Інтерполяція за Лагранжем. Практична формула.
презентация [92,6 K], добавлен 06.02.2014Огинаючі лінії диференціального рівняння. Брахистохрона з фіксованою абсцисою правого кінця. Геодезичні лінії на кривої поверхні. Криволінійна трапеція з найбільшою площею. Крива прогину гнучкої нерозтяжної нитки. Поверхня обертання найменшої площі.
курсовая работа [947,3 K], добавлен 15.02.2011