Теорема Пифагора

Исторический обзор жизни и творческого пути философа. Пентаграмма (пятиконечная звезда) - пифагорейский символ здоровья. История теоремы Пифагора, ее геометрическая формулировка. Различные способы ее доказательства. Обобщение, области применения.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 21.05.2016
Размер файла 23,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Реферат

на тему «Теорема Пифагора»

Содержание

Введение

1. Методика исследований

2. Биография Пифагора

3. Школа Пифагора

4. История теоремы Пифагора

5. Формулировки теоремы Пифагора

6. Различные способы доказательства теоремы Пифагора

7. Обобщение теоремы Пифагора

8. Применение теоремы Пифагора

Заключение

Список используемых источников

Введение

В своей работе я хочу рассказать о Пифагоре и о теореме Пифагора, так как меня интересует геометрия как наука в целом, и ее изучение пригодится мне в дальнейшем. Первое что меня привлекло в этой теме - это возможность изучить практические свойства самой знаменитой теоремы в геометрии. Второе-это развитие различных технологий, где используется эта теорема, и которые мне кажутся перспективными сейчас и в будущем.

На протяжении многих лет людей интересовал вопрос о теореме Пифагора и о различных способах её доказательства. В современных школьных учебниках рассматриваются традиционные доказательства теоремы Пифагора. Это - алгебраическое доказательство, основанное на площади. Приведено в учебнике «Геометрия 7-9», Л.С. Атанасян. Доказательство Евклида рассматривается в учебнике «Геометрия: Учебник для 6-9 классов средней школы», А.П.Киселёв. Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах. Причина такой популярности теоремы Пифагора триедина: это простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал придает ей особую притягательную силу, делает ее красивой.

Теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.) свидетельствует о гигантском числе ее конкретных реализаций, Теорема Пифагора представляет большой интерес-это фундамент, основа всех математических вычислений, расчетов и многих изобретений. Считаю, что его труды и великие открытия, которые он произвел, до сих пор актуальны, так как находят свое применение во многих отраслях науки и жизнедеятельности всего человечества. Куда бы мы ни посмотрели, везде можно увидеть плоды его великих идей, воплощенные в различные реалии современной жизни.

Цель: Знакомство с историей жизни, изучение творческого пути Пифагора. Изучение доказательств теоремы. Выяснить, почему так знаменита теорема Пифагора? Возможность собрать и представить наиболее полную информацию по данной теме для того, чтобы дать возможность другим ученикам получить более глубокие сведения по теме «Теорема Пифагора». Рассмотреть задачи, которые опираются на теорему Пифагора, затрагивающие различные области науки, искусства и техники.

Задачи:

1.Изучить биографию Пифагора;

2. Найти и изучить различные способы существующих доказательств теоремы;

3. Определить значение теоремы Пифагора для развития науки и использования в различных областях;

4. Работать с литературой, в сети Интернета;

5. Учиться обобщать и обрабатывать полученную информацию.

1. Методика исследований

Я очень мало знала о Пифагоре, тем более о философских системах. Постепенно воспринимала изучаемый материал, размышляла над ним, а затем приходила к самостоятельным микрооткрытиям. При этом сам процесс исследовательской работы для меня был не менее важен, чем конечный результат. Я исследовала следующие вопросы: «Биография Пифагора», «Пифагор-философ и педагог», «Теорема Пифагора», « Различные способы доказательства», «Применение», «Значение». С помощью поисковой программы www.google.ru сделала запрос по ключевым словам: Пифагор, Древняя Греция, теорема Пифагора, различные способы доказательства, применение теоремы Пифагора и др. Полученную информацию систематизировала. Также очень много информации получила из печатных источников.

2. Биография Пифагора

Очень интересна биография Пифагора. Сам факт, что Пифагор - это не имя, а прозвище, которое философ получил за то, что всегда говорил верно и убедительно, как греческий оракул. (Пифагор - "убеждающий речью").

Пифагор Самосский - великий греческий ученый. Его имя знакомо каждому школьнику. Про жизнь Пифагора известно очень мало, с его именем связано большое число легенд. Пифагор - один из самых известных ученых, но и самая загадочная личность, человек-символ, философ и пророк. Он был властителем дум и проповедником созданной им религии. Его обожествляли и ненавидели… Так кто же ты, Пифагор?

Он родился около 580-500 гг. до н. э. на острове Самос, далеко от Греции. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери считается неизвестным, но при изучении одного из источников я выяснила, что мать звали Парфенисой. По многим свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности.

Среди учителей юного Пифагора называют имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно они были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера. Ферекид же был философом и считался основателем италийской школы философии. Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, он видел в ясные дни желтые дороги, бегущие по большой земле в большой мир. Они звали его.

Он отправляется в Милет, где встречается с другим ученым - Фалесом. Слава об этом мудреце гремела по всей Элладе. Во время встреч велись оживленные беседы. Именно Фалес посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал.

Совсем юным покинул Пифагор родину. Сначала приплыл к берегам Египта, прошел его вдоль и поперек. Внимательно присматривался к окружающим, прислушивался к жрецам. В Египте, рассказывают, Пифагор попал в плен к Камбизу, персидскому завоевателю, и его увезли в Вавилон. Пифагор знал, что это величайший город мира, он быстро освоился со сложными вавилонскими традициями. Жадно впитывал речи халдейских жрецов. У халдейских магов изучал теорию чисел.

В течение 22 лет он проходил обучение в храмах Мемфиса и получил посвящение высшей степени. Здесь же он глубоко изучил математику, “науку чисел или всемирных принципов”, из которой впоследствии сделал центр своей системы. Из Мемфиса, по приказу вторгшегося в Египет Камбиза, Пифагор вместе с египетскими жрецами попал в Вавилон, где провел еще 12 лет. Здесь он имел возможность изучить многие религии и культы, проникнуть в мистерии древней магии наследников Зороастра.

3. Школа Пифагора

Приблизительно в 530 году Пифагор, наконец, возвратился в Грецию и вскоре переселился в Южную Италию, в г. Кротон. В Кротоне он основал пифагорейский союз, который был одновременно философской школой, политической партией и религиозным братством.

Свою школу Пифагор создает как организацию со строго ограниченным числом учеников из аристократии, и попасть в нее было не просто. Претендент должен был выдержать ряд испытаний; по утверждению некоторых историков, одним из таких испытаний являлся обет пятилетнего молчания. Другим законом организации было хранение тайны, несоблюдение которой строго каралось - вплоть до смерти.

Главным пифагорейским символом здоровья и опознавательным знаком была пентаграмма - звездчатый пятиугольник, образованный диагоналями правильного пятиугольника. Он содержал все пропорции: геометрическую, арифметическую, золотую. Она была тайным знаком, по которому пифагорейцы узнавали друг друга. В средние века считалось, что пентаграмма предохраняет от «нечистой силы». Пятиконечной звезде около 3000 лет. Сегодня пятиконечная звезда реет на флагах едва ли не половины стран мира. Внутренняя красота математического строения была еще замечена Пифагором. Нравственные принципы, проповедуемые Пифагором и сегодня достойны подражания. Его школа способствовала формированию интеллектуальной элиты. Пифагорейцы жили по определенным заповедям, и нам тоже не помешало бы их придерживаться, хотя им уже около двух с половиной тысяч лет.

С самого начала в пифагоризме сформировались два различных направления - "асуматики" и "математики". Первое направление занималось этическими и политическими вопросами, воспитанием и обучением, второе - главным образом исследованиями в области геометрии.

Школа вызвала недовольство жителей острова, и Пифагору пришлось покинуть родину. Он переселяется в южную Италию- колонию Греции - и здесь, в Кротоне, вновь основывает школу - пифагорейский союз, просуществовавший около двух веков.

Сейчас трудно сказать, какие научные идеи принадлежат Пифагору, какие его воспитанникам и последователям. Осталось неизвестным, он ли открыл и доказал знаменитую теорему, носящую его имя, ему ли самому удалось впервые доказать теорему о сумме углов треугольника.

Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учит медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики.

В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, впервые появились именно в Школе Пифагора. Пифагор прожил 80 лет. Существует много легенд о его смерти. По одной из них он был убит в уличной схватке.

Школа Пифагора дала Греции целую плеяду талантливых философов, физиков и математиков. С их именем связаны в математике систематическое введение доказательств в геометрию, рассмотрение ее как абстрактной науки, создание учения о подобии, доказательство теоремы, носящей имя Пифагора, построение некоторых правильных многоугольников и многогранников, а также учение о четных и нечетных, простых и составных, о фигурных и совершенных числах, арифметических, геометрических и гармонических пропорциях и средних.

Для нас Пифагор - математик. В древности было иначе. Для своих современников Пифагор прежде всего был религиозным пророком, воплощением высшей божественной мудрости. Одни называли его математиком, философом, другие - шарлатаном. Интересен и тот факт, что Пифагор первым и четыре раза подряд был олимпийским чемпионом по кулачному бою.

4. История теоремы Пифагора

С его именем связано многое в математике и в первую очередь, конечно, теорема, носящая его имя. Это теорема Пифагора. В настоящее время все согласны с тем, что эта теорема не была открыта Пифагором. Она была известна еще до него. Ее частные случаи знали в Китае, Вавилонии, Египте.

Исторический обзор начинается с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

Кантор (крупнейший немецкий историк математики) считает, что равенство 3І+4І=5І было известно уже египтянам еще около 2300 г. до н. э. По мнению Канторагарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 метров и привяжем к ней по цветной полоске на расстоянии 3 метра от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.

Египетский треугольник -- прямоугольный треугольник с соотношением сторон 3:4:5. Особенностью такого треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9:16:25. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников -- треугольников с целочисленными сторонами и площадями. Название треугольнику с таким отношением сторон дали эллины: в VII - V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет -- и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы. Египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов землемерами и архитекторами.

Хотя гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.

Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:

"Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."

Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Теорема гласит: Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Теорема Пифагора попала в Книгу рекордов Гиннеса, как теорема с наибольшим количеством доказательств. Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора послужила источником для множества обобщений и плодородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана.

5. Формулировки теоремы Пифагора

Геометрическая формулировка:

Изначально теорема была сформулирована следующим образом:

В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах.

Алгебраическая формулировка:

В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

То есть, обозначив длину гипотенузы треугольника через, а длины катетов через и:

а2+ в2=с2

Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.

6. Различные способы доказательства теоремы Пифагора

Для всякой тройки положительных чисел а,в,с, таких, что а2+в2=с2, существует прямоугольный треугольник с катетами а,в и гипотенузой с.

С глубокой древности математики находят все новые и новые доказательства теоремы Пифагора, все новые и новые замыслы ее доказательств. Известно более или менее строгих доказательств около пятисот, но стремление к преумножению их числа сохранилось.

На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.

Все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).

Простейшее доказательство

Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.

Простейшее доказательство теоремы получается в случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема.

В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для ДABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.

7. Обобщение теоремы Пифагора

Теорема косинусов является обобщением теоремы Пифагора. Звучит она так:

«Квадрат стороны произвольного треугольника равен сумме квадратов двух других его сторон без удвоенного произведения одной из этих сторон на взятую на ней проекцию другой».с2=а2+в2-2ав*cosг.Действительно, если г=90?, то cos90?=0 и с2=а2+в2

8. Применение теоремы Пифагора

Не буду пытаться привести все примеры использования теоремы - это вряд ли было бы возможно. Область применения теоремы достаточно обширна и вообще не может быть указана с достаточной полнотой.

В первую очередь теорема Пифагора применяется в школьном курсе математики и курсах смежных дисциплин.

Определю возможности, которые дает теорема Пифагора для вычисления длин отрезков некоторых фигур на плоскости.

Это нахождение диагонали квадрата, диагонали прямоугольника, высоты равностороннего треугольника.

Нахождение в пространстве диагонали куба, диагонали прямоугольного параллелепипеда, нахождение бокового ребра и высоты пирамиды, проходящей через центр основания.

Теорема Пифагора используется также при построении сечений в объемных фигурах, таких как куб, конус и других.

При выводе уравнения окружности.

В строительстве: крыш, окон, молниеотводов, мостов, зданий, различных металлоконструкций; при строительстве любых сооружений рассчитывают расстояния, центры тяжести, размещение опор, балок и т.д. Если, например, рассматривать четырехугольную пирамиду как крышу башни, то речь идет о том, какой длины нужно сделать боковые ребра, чтобы при данной площади чердака была выдержана предписанная высота крыши, а вопрос о величине боковой поверхности должен интересовать, например, кровельщика при подсчете стоимости кровельных работ.

В зданиях готического и ромaнского стилей верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон.

В рассмотренном примере радиусы находились без всяких затруднений. В других аналогичных примерах могут потребоваться вычисления. В романской архитектуре часто встречается мотив, представленный на рисунке.

Также свое применение теорема Пифагора нашла в работах по астрономии и космонавтики при изучении пути светового луча, сигнала. Изначально она использовалась при определении расстояния до различных звезд, галактик.

В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса, подобных человеку. Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора. Неизвестно, как это сделать, но для всех очевидно, что математический факт, выражаемый теоремой Пифагора, имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.

Немаловажную роль имеет она и в мобильной связи. Чем надежнее связь, тем больше потребителей. Например, нужно определить какую наибольшую высоту должна иметь антенна, чтобы передачу можно было принимать в определенном радиусе.

В Германии недавно открылся кинотеатр, где показывают кино в шести измерениях: первые три даже перечислять не стоит, а также время, запах и вкус. Это наглядно говорит о том, насколько быстро увеличивается количество измерений, используемых человечеством. Ведь еще совсем недавно никто и не говорил о более чем трех измерениях в кино. Вы спросите: « А как связаны между собой теорема Пифагора и запахи, вкусы?» А все очень "просто": ведь при показе кино надо рассчитать, куда и какие запахи направлять и т.д. Представьте: на экране показывают джунгли, и вы чувствуете запах листьев, показывают обедающего человека, а вы чувствуете вкус еды... Захватывает? Конечно да, и это говорит о том, насколько много направлений деятельности еще будет у теоремы Пифагора и теорем, связанных с ней. Но не надо думать, что теорема Пифагора больше не имеет других значений. Из того, что я уже сказал, надо сделать вывод, что все эти технологии используются также и в других отраслях.

пифагор философ геометрический

Заключение

В целом, значение теоремы, кроме вышесказанного, заключается в том, что она применяется практически во всех современных технологиях, а также открывает простор для создания новых. Я считаю, что за теоремой Пифагора следует великое будущее многих открытий, которыми человечество потрясет весь мир.

Возможно значение теоремы Пифагора состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии и решить множество задач. Из-за этого многие ученые называют эту теорему самой главной в геометрии. Теорема Пифагора - фундамент, базис, основа всех математических вычислений, расчетов и многих изобретений. Творческая работа по изучению биографии Пифагора и математического наследия позволила в корне изменить все мои взгляды на этого великого и гениального ученого древности.

Я провела социологический опрос. В опросе приняли участие группа учеников ЦДО, тьюторы, учителя, техники нашей школы, откликнулись на мои вопросы в социальных сетях Вконтакте и одноклассниках. Опрошены 31 человек. Из них практически все знакомы с высказыванием «Пифагоровы штаны во все стороны равны» (90%). Смогли дать точную формулировку теоремы 74% опрошенных. Рассказали о Пифагоре, как об ученом, философе, основателе школы пифагорейцев 61% опрошенных.

По данному опросу можно сделать вывод о том, что большое количество опрошенных знакомо с именем Пифагора, теоремой Пифагора и знают где можно применить в практической деятельности теорему. Это еще раз говорит об актуальности данной темы.

Список используемых источников

1. Астахова В.Г. и др. «Мир вокруг нас» Москва Издательство политической литературы, 1983 год, 175с.

2. Атанасян Л.С. и др. Геометрия 7-9. Учебник для общеобразовательных учреждений Москва «Просвещение», 2006 год

3. Глейзер Г.И. «История математики в школе 4-6 классы» Москва «Просвещение», 1981год, 239с.

4. Депман И.Я. «За страницами учебника математики» Пособие для учащихся 5-6 классов средней школы Москва «Просвещение», 1989год, 287с.

5. Кисилев А.П. Элементарная геометрия Москва «Просвещение», 1980 год, 287с.

6. Погорелов А.В. Геометрия 7-9. Учебник для общеобразовательных учреждений Москва «Просвещение», 2006год.

7. Энциклопедический словарь юного математика Москва «Педагогика», 1989 год, 349с.

8. Белл Э.Т. Творцы математики. Предшественники современной математики/ Под ред. С.Н. Киро. М., 1979

9. Реньи А. Трилогия о математике (Диалоги о математике. Письма о вероятности. Дневник - Записки студента по теории информации)/ Пер. с венг. Под ред. Б.В. Гнеденко. М., 1980

10. Хрестоматия по истории математики в 2-х т./ Под ред. А.П. Юшкевича. М., 1975, 1976

11. Математика в школе. Рубрики «Математический календарь» и «Ученые-математики» (с 1975 г.)

Размещено на Allbest.ru


Подобные документы

  • Краткий биографический очерк жизненного пути Пифагора. История появления теоремы Пифагора, ее дальнейшее распространение в мире. Формулировка и доказательство теоремы с помощью различных методов. Возможности применения теоремы Пифагора к вычислениям.

    презентация [309,4 K], добавлен 17.11.2011

  • Страницы биографии древнегреческого философа и математика Пифагора. Теорема Пифагора: основные формулировки и методы доказательства. Обратная теорема Пифагора. Примеры задач на применение теоремы Пифагора. "Пифагоровы штаны" и "тройка", "дерево Пифагора".

    научная работа [858,3 K], добавлен 29.03.2011

  • Геометрическая и алгебраическая формулировка теоремы Пифагора. Многочисленность ее доказательств: через подобные треугольники, методом площадей, через равнодополняемость, при помощи дифференциальных уравнений. Доказательства Евклида и Леонардо да Винчи.

    презентация [378,7 K], добавлен 15.10.2013

  • Популярность и биография великого математика, тайны теоремы Пифагора "О равенстве квадрата гипотенузы прямоугольного треугольника сумме квадратов катетов", история теоремы. Различные способы доказательств теоремы Пифагора, области ее применения.

    презентация [376,2 K], добавлен 28.02.2012

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация [11,6 M], добавлен 04.04.2019

  • История создания теоремы. Краткая биографическая справка из жизни Пифагора Самосского. Основные формулировки теоремы. Доказательство Евклида, Хоукинса. Доказательство через: подобные треугольники, равнодополняемость. Практическое применение теоремы.

    презентация [3,6 M], добавлен 21.10.2011

  • Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.

    презентация [257,4 K], добавлен 05.12.2010

  • Путь Пифагора к знаниям, источники его учения и научная деятельность. Формулировка теоремы Пифагора, ее простейшее доказательство на примере равнобедренного прямоугольного треугольника. Применение изучаемой теоремы для решения геометрических задач.

    презентация [174,3 K], добавлен 18.12.2012

  • Жизненный путь Пифагора, его путешествия и загадочная смерть. Заслуги Пифагора в арифметике, геометрии, музыке и астрономии. Древняя и современная формулировки теоремы Пифагора. Тригонометрическое доказательство и некоторые применения этой теоремы.

    презентация [571,0 K], добавлен 13.12.2011

  • Биографические сведения о жизни греческого философа и математика Пифагора Самосского. Возникновение на юге Италии "Пифагорейской школы". Доказательство основной геометрической теоремы методом разложения математиком ан-Найризи и астрономом Перигэлом.

    презентация [1,6 M], добавлен 01.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.