Об оценке приближенного представления функции п(x)
Понятие зависимости между простыми числами в работах Лежандра и Гаусса. Методы суммирования упорядоченных множеств. Асимптотический анализ данной функции в трудах русского математика П. Чебышева. Ложности функции бесконечного множества по Литлвуду.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 21.05.2016 |
Размер файла | 621,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Основные понятия размерности упорядоченных множеств. Определение размерности упорядоченного множества. Свойства размерности конечных упорядоченных множеств. Порядковая структура и элементы алгебраической теории решёток.
дипломная работа [191,8 K], добавлен 08.08.2007Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.
лекция [540,0 K], добавлен 25.03.2012Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.
презентация [564,8 K], добавлен 23.12.2013Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.
курсовая работа [358,3 K], добавлен 07.12.2012Теория частичных действий как естественное продолжение теории полных действий. История создания и перспективы развития теории упорядоченных множеств. Частично упорядоченные множества. Вполне упорядоченные множества. Частичные группоиды и их свойства.
реферат [185,5 K], добавлен 24.12.2007Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.
курсовая работа [1,1 M], добавлен 24.06.2015Способы задавания функции: табличный, графический и аналитический. Область определения и область значений функции, промежутки ее знакопостоянства. Свойства постоянной функции. Множества значений функции y=arctgx. Основные свойства функции y=sinx.
реферат [799,4 K], добавлен 22.06.2019Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.
реферат [503,6 K], добавлен 10.02.2011Понятие функции как одно из важнейших понятий математики. Сюръекции, инъекции и биекции. Композиция или сложная функция и ее иллюстрация. Зависимость множеств Х и У, их области, элементы и простейших операций над ними. История математической функции.
реферат [58,8 K], добавлен 11.03.2009Мера ограниченного открытого множества. Мера ограниченного замкнутого множества. Внешняя и внутренняя меры ограниченного множества. Измеримые множества. Измеримость и мера как инварианты движения. Класс измеримых множеств.
курсовая работа [122,6 K], добавлен 28.05.2007