Взаимное пересечение поверхностей

Пересечение двух многогранников и общий алгоритм построения лини пересечения поверхностей. Пересечение гранной и кривой поверхности. Описание методов вспомогательных секущих плоскостей и сфер. Особенности пересечения поверхностей вращения, теорема Монжа.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 15.04.2016
Размер файла 860,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Взаимное пересечение поверхностей

План

1. Пересечение двух многогранников

2. Пересечение гранной и кривой поверхности

3. Пересечение двух кривых поверхностей. Метод вспомогательных секущих плоскостей

4. Пересечение поверхностей вращения. Метод вспомогательных секущих сфер

5. Теорема Монжа

1. Пересечение двух многогранников

При пересечении поверхностей образуется линия, которую принято называть линией взаимного пересечения поверхностей. Эта линия пересечения принадлежит одновременно двум плоскостям. Поэтому построение линии пересечения сводится к определению точек одновременно принадлежащих обеим поверхностям. Для нахождения таких точек используется в общем случае метод вспомогательных секущих поверхностей. Сущность способа заключается в следующем: Пусть задано две поверхности д и ц (рис.1)

Общий алгоритм построения лини пересечения поверхностей:

1. Введем вспомогательную поверхность Ф.

2. Строим лини пересечения поверхности Ф с поверхностями д и ц (a и b).

3. Определяем точки пересечения К и М, построенных линий пересечения a и b.

4. Многократно повторяя эту операцию, найдем ряд точек, принадлежащих одновременно двум поверхностям.

5. Соединяем последовательно точки с учетом видимости.

В качестве посредников могут быть приняты как поверхности, так и плоскости, но целесообразно выбирать такие, которые дают наиболее простые лини пересечения с заданными поверхностями.

Для построения лини пересечения двух многогранников необходимо определить точки пересечения ребер первого многогранника с гранями второго, затем ребер второго с гранями первого. Полученные точки соединить отрезками прямой с учетом видимости. На рис. 2 заданы поверхности трехгранной призмы DEFD'E' F' и трехгранной пирамиды SABC. Так как призма фронтальнопроецирующая, фронтальная проекция лини пересечения совпадает с гранями призмы, поэтому необходимо построить только горизонтальную проекцию. Для этого определяем точки пересечения ребер пирамиды с гранями призмы. Ребро SС в точках 1 и 2, ребро SB в точках 3 и 4 ребро SA не пересекает призму. Затем определяем точки пересечения ребер призмы с гранями пирамиды. По чертежу видим, что только ребро DD' пресекает поверхность пирамиды. Для определения точек пересечения 5 и 6 через ребро DD' проводим горизонтальную плоскость, которая пересекает пирамиду по треугольнику. Точки 5 и 6 получаем, как пересечение DD' с построенным треугольником.

Полученные точки соединяем с учетом видимости. Видимой считается тот отрезок прямой, который принадлежит двум видимым граням поверхностей.

Как видим, линия пересечения двух многогранников представляет собой пространственную ломаную линию.

2. Пересечение гранной и кривой поверхности

Линия пересечения гранной и кривой поверхности, представляет собой пространственную кривую лини, с точками излома на ребрах многогранника.

Поэтому сначала определяем точки пересечения ребер многогранника с кривой поверхностью, а затем промежуточные точки и соединяем их с учетом видимости. На рис. 3 заданы поверхности трехгранной призмы и кругового конуса.

Так как призма фронтально-проецирующая, фронтальная проекция лини пересечения совпадает с проекцией боковых граней призмы, поэтому необходимо построить только горизонтальную проекцию лини пересечения.

Сначала определяем точки пересечения ребер призмы АА', ВВ', СС' с поверхностью конуса, а затем находим промежуточные точки, принадлежащие линиям пересечения. Для нахождения точек пересечения, используем горизонтальные плоскости посредники, так как они пересекают конус по окружностям, а призму по прямым линиям. Как видим, в данном случае линия пересечения распадается на две отдельные части.

3. Пересечение двух кривых поверхностей

Линия пересечения двух кривых поверхностей, представляет пространственную кривую линию. Поэтому для ее построения необходимо определить ряд точек принадлежащих этой лини.

На рисунке 4 заданы поверхности конуса и сферы. Точки строятся при помощи горизонтальных плоскостей посредников, которые рассекают обе поверхности по окружностям.

Обязательно находим опорные точки, к которым относятся и низшая точка линии пересечения и точки границы видимости. Так как оси поверхностей лежат в одной фронтальной плоскости, контурные образующие поверхностей пересекаются в точках 1 и 2 - это и будет высшая и низшая точки. Точки границы видимости лежат на экваторе сферы, поэтому точки 3 и 3' находим с помощью вспомогательной горизонтальной плоскости, проходящей через центр сферы. Она рассекает сферу по экватору, а конус по параллели радиуса R.

Взаимно пересекаясь, они и дают точки 3 и 3' фронтальную проекцию определяем по вертикальной лини связи на плоскости д. Затем берем еще две вспомогательные плоскости расположенные выше и ниже плоскости д и выполняя, аналогичные построения определяем точки 4 и 4', 5 и 5'. Полученные точки соединяем с учетом видимости.

4. Метод вспомогательных секущих сфер

Способ вспомогательных секущих сфер применяется при следующих условиях:

1. Пересекающиеся поверхности являются поверхностями вращения.

2. Оси этих поверхностей пересекаются.

3. Оси поверхностей параллельны одной из плоскостей проекций.

Перед рассмотрением этого способа разберем понятие соосных поверхностей. Соосными называются поверхности вращения, имеющие общую ось. Соосные поверхности пересекаются по окружностям перпендикулярным оси вращения.

На рисунке 5 приведены некоторые из них.

Именно то, что поверхности пересекаются по окружности, которые проецируются в линию и используется в методе сфер.

Рассмотрим пример на рис. 6. Даны поверхности вращения - конус и цилиндр. Так как оси лежат в одной плоскости, можно определить точки пересечения контурных образующих в точках 1 и 2, как в предыдущем примере.

Однако, для нахождения промежуточных точек, вспомогательные секущие плоскости не подходят, т.к. горизонтальные плоскости рассекут цилиндр по эллипсам, фронтально-проецирующие - конус по эллипсам. А сам эллипс строить непросто. Поэтому именно в этом случае удобно использовать в качестве посредников - сферы. За центр заданных поверхностей, принимается точка пересечения осей, необходимо определить, каких радиусов необходимо брать вспомогательные секущие сферы. Максимальный радиус сферы Rmax - это расстояние от центра сфер до наиболее удаленной точки пересечения контурных образующих (в данном случае точка 1).

Минимальный радиус сферы Rmin - радиус сферы, которая вписана в одну из поверхностей, а другую пересекает. В данном случае минимальная сфера вписана в конус. Минимальная сфера касается поверхности конуса по окружности, а цилиндр пересекает по окружности. Нужно, иметь в виду, что проекции окружностей пересечения перпендикулярны осям вращения. Эти две окружности пересекаются в точке 32. Фактически таких точек две, они совпадают на фронтальной проекции. Для построения промежуточных точек берем вспомогательные сферы радиусов в пределах от Rmin до Rmax.

Они пересекают и поверхность цилиндра, и поверхность конуса по окружности, которые пересекаясь дают промежуточные точки. Полученные точки соединяются плавной линией.

Здесь построены только фронтальная проекция. Для построения горизонтальной проекции, если это необходимо, точки строят как лежащие на окружностях полученных радиусов.

5. Теорема Монжа

многогранник пересечение плоскость сфера

Рассмотрим вариант, когда минимальная сфера касается двух поверхностей вращения. В этом случае для построения лини пересечения поверхностей используется теорема Г.Монжа, которая формулируется так:

Если две поверхности вращения второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечении линий касания.

В соответствии с этой теоремой линии пересечения конуса и цилиндра описанного около сферы (рис.7) будут плоскими кривыми - эллипсами, фронтальные проекции которых изображаются прямыми 12 42 и 2232,

Размещено на Allbest.ru


Подобные документы

  • Общие сведения о пересечении кривых поверхностей. Способ вспомогательных секущих плоскостей. Пересечение поверхностей с параллельными осями. Применение способа концентрических сфер. Последовательность нахождения горизонтальных проекций заданных точек.

    методичка [2,0 M], добавлен 18.02.2015

  • Представление о взаимном расположении поверхностей в пространстве. Линейчатые и нелинейчатые поверхности вращения. Пересечение кривых поверхностей. Общие сведения о поверхностях. Общий способ построения линии пересечения одной поверхности другою.

    реферат [5,4 M], добавлен 10.01.2009

  • Особенности использования метода секущих плоскостей для создания проекции и разветки пересечения поверхностей фигур. Порядок построения изометрии взаимного пересечения поверхностей фигур. Характеристика процесса создания фигуры с вырезом, опоры и стойки.

    реферат [21,3 K], добавлен 27.07.2010

  • Начертательная геометрия - прикладная наука. Комплексный чертеж плоскости. Взаимные пересечения плоскостей, их перпендикулярность и параллельность с прямыми. Сечение поверхности сферы плоскостями. Пересечение поверхностей, аксонометрические проекции.

    методичка [4,2 M], добавлен 03.02.2013

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Способы формообразования и отображения поверхностей. Закон образования поверхности. Основные свойства, вытекающие из закона образования поверхности вращения. Линейчатые поверхности с плоскостью параллелизма. Образование каркаса циклических поверхностей.

    реферат [2,0 M], добавлен 19.05.2014

  • Подробный анализ поверхностей Каталана и условия, отделяющие этот класс от класса линейчатых поверхностей. Формулы для расчета первой и второй квадратичных форм поверхностей класса КА. Доказательство утверждений о влиянии вида кривых на тип поверхности.

    дипломная работа [1,4 M], добавлен 06.06.2011

  • Характеристика семейства поверхностей. Касательная прямая и плоскость. Криволинейные координаты. Вычисление длины дуги кривой на поверхности и ее площади. Угол между двумя линиями на поверхности. Нормальная кривизна линий, расположенных на поверхности.

    дипломная работа [2,0 M], добавлен 18.05.2013

  • Доказательство теоремы единственности для кривых второго порядка. Преимущества и недостатки разных способов доказательства теоремы единственности. Пучок кривых второго порядка. Методы решения теоремы единственности для поверхностей второго порядка.

    курсовая работа [302,7 K], добавлен 22.01.2011

  • Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.

    курсовая работа [644,0 K], добавлен 19.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.