Про метод найменших квадратів, адаптований до закону похибок Пірсона-Джеффріса
Оцінка значення аналізу залишкових похибок з точки зору фішерівської теорії оцінок, що дає змогу окреслити зони сингулярності вагової функції під час застосування методу найменших квадратів. Отримання ефективних оцінок за методом найменших квадратів.
Рубрика | Математика |
Вид | статья |
Язык | украинский |
Дата добавления | 24.02.2016 |
Размер файла | 302,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Метод найменших квадратів. Задача про пошуки параметрів. Означення метода найменших квадратів. Визначення параметрів функціональних залежностей. Вид нормальної системи Гауса. Побудова математичної моделі, використовуючи метод найменших квадратів.
реферат [111,0 K], добавлен 25.12.2010Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
контрольная работа [128,1 K], добавлен 22.01.2011Основні поняття математичної статистики. Оцінювання параметрів розподілів. Метод максимальної правдоподібності. Парадокси оцінок математичного сподівання та дисперсії, Байєса, методу найменших квадратів, кореляції, перевірки гіпотез та їх пояснення.
дипломная работа [1,1 M], добавлен 12.08.2010Поняття економетричної моделі та етапи її побудови. Сутність та характерні властивості коефіцієнта множинної кореляції. Оцінка значущості множинної регресії. Визначення довірчих інтервалів для функції регресії та її параметрів. Метод найменших квадратів.
курсовая работа [214,6 K], добавлен 24.05.2013Знаходження коефіцієнтів для рівнянь нелінійного виду та аналіз рівняння регресії. Визначення параметрів емпіричної формули. Метод найменших квадратів. Параболічна інтерполяція, метод Лагранжа. Лінійна кореляція між випадковими фізичними величинами.
курсовая работа [211,5 K], добавлен 25.04.2014Лінійна багатовимірна регресія, довірчі інтервали регресії та похибка прогнозу. Лінійний регресійний аналіз інтервальних даних, методи найменших квадратів для інтервальних даних і лінійної моделі. Програмний продукт "Інтервальне значення параметрів".
дипломная работа [1,1 M], добавлен 12.08.2010Вивчення методів розв'язання лінійної крайової задачі комбінуванням двох задач Коші. Переваги та недоліки інших методів: прицілювання, колокацій, Гальоркіна, найменших квадратів та ін. Пошук єдиного розв'язку звичайного диференціального рівняння.
курсовая работа [419,2 K], добавлен 29.08.2010Вивчення наслідків порушення основних припущень лінійного регресійного аналізу: припущення про незміщеність похибок, про однакову дисперсію і некорельованість похибок, про нормальний розподіл похибок та припущення про незалежність спостережень.
магистерская работа [4,7 M], добавлен 12.08.2010Закон розподілення дискретної випадкової величини, подання в аналітичній формі за допомогою функції розподілення ймовірності. Числові характеристики дискретних випадкових величин. Значення критерію збіжності Пірсона. Аналіз оцінок математичного чекання.
курсовая работа [105,2 K], добавлен 09.07.2009Обчислення оцінок основних статистичних характеристик: середнього значення, середнього квадратичного відхилення результатів, дисперсії розсіювання результатів вимірювань, коефіцієнта асиметрії. Перевірка наявніості похибок за коефіцієнтом Стьюдента.
контрольная работа [245,5 K], добавлен 25.02.2011