Линейные уравнения

Изучение линейных однородных уравнений с постоянными коэффициентами (случай простых и кратных корней), их фазовая плоскость. Расчет показателей нормальной линейной однородной и линейной неоднородной системы с постоянными коэффициентами в математике.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 04.01.2016
Размер файла 90,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

Линейные уравнения с постоянными коэффициентами имеют многочисленные технические применения, так как работа весьма многих технических объектов достаточно адекватным образом описывается этими уравнениями. Именно технические применения выдвигают ряд новых задач теоретического характера в теории линейных уравнений с постоянными коэффициентами. Решению этих теоретических задач посвящено немало работ, имеющих прикладную направленность.

Работа очень многих механических, электрических и другого вида устройств (машин, приборов и т.п.) описывается системами обыкновенных дифференциальных уравнений. Система обыкновенных дифференциальных уравнений имеет всегда бесконечное множество решений, и для задания одного определенного решения нужно указать его начальные значения. Для полного понимания какого-либо устройства желательно иметь хорошее представление о фазовом пространстве системы уравнений, описывающей работу этого устройства. При этом важнее всего знать все устойчивые решения этой системы уравнений.

1. Линейное однородное уравнении с постоянными коэффициентами (случай простых корней)

В этом и следующем параграфах будет решено линейное одно родное уравнение с постоянными коэффициентами порядка n, т. е. уравнение

(1)

где z есть неизвестная функция независимого переменного t, коэффициенты суть постоянные числа (действительные или комплексные). линейный уравнение корень плоскость

Сначала будут найдены все комплексные решения этого уравнения, а затем (в случае, когда коэффициенты действительны) из них будут выделены действительные решения. Уравнение (1) можно записать в виде:

(2)

так что к нему применима теорема существования и единственности. В дальнейшем будет использована лишь единственность, так как решения уравнения (2) будут найдены явно и тем самым существование их будет установлено; единственность же будет использована для доказательства того, что найдены все решения.

В инженерных применениях обыкновенных дифференциальных уравнений с постоянными коэффициентами важную роль играет операционное исчисление. Мы используем операционные обозначения, лежащие в основе операционного исчисления. Суть этих обозначений заключается в том, что производная по времени t, от произвольной функции обозначается не через , а через , так что буква р, стоящая слева от функции, является символом дифференцирования по t. Если позволить себе применить к символу дифференцирования р некоторые алгебраические действия, то мы приходим к обозначению

Пользуясь этим обозначением, мы можем написать:

Если теперь в правой части последнего равенства позволить себе вынести за скобку функцию z, то мы получаем равенство

Таким образом, мы приходим к формальному определению.

А) Пусть

произвольный многочлен относительно символа р с постоянными коэффициентами (действительными или комплексными) и z -- некоторая действительная или комплексная функция действительного переменного t.

Следовательно:

(3)

Если и суть два произвольных многочлена относительно символа р (или, как говорят, оператора дифференцирования р), а -- функции переменного t, то, как легко видеть, мы имеем тождества

В силу введенных обозначений уравнение (1) может быть записано в виде:

(4)

Б) Пусть -- произвольный многочлен относительно символа р. Тогда

(5)

Докажем формулу (5). Мы имеем .Из этого следует, что . Отсюда формула (5) вытекает непосредственно (смотреть (3)).

Из формулы (5) следует, что функция тогда и только тогда является решением уравнения (4), когда число есть корень многочлена . Многочлен называется характеристическим многочленом уравнения (4). В том случае, когда он не имеет кратных корней, совокупность всех решений уравнения (4) описывается следующей теоремой.

Теорема 1. Предположим, что характеристический многочлен уравнения (6) (смотреть (1) и (4)) не имеет кратных корней, и обозначим его корни через Следовательно:

(7)

Тогда при любых комплексных постоянных функция

(8)

является решением уравнения (6). Решение это является общим в том смысле, что каждое решение уравнении (6) может быть получено по формуле (8) при надлежащем выборе констант . При этом константы (называемые постоянными интегрирования) однозначно определяются для каждого данного решения z.

Заметим, что функции (7) определены на всей числовой прямой .

2. Линейное однородное уравнение с постоянными коэффициентами (случаи кратных корней)

Если характеристический многочлен

Уравнения

(1)

имеет кратные корни, то среди функций вида нельзя найти n различных решений уравнения (1). Для нахождения в этом случае решений другого вида можно воспользоваться следующим наводящим соображением.

Пусть и -- два различных действительных корня характеристического многочлена L(р); тогда функция является решением уравнения (1). Если теперь предположить, что при изменении коэффициентов многочлена L (р) число стремится к , то это решение переходит (в пределе) в функцию , о которой естественно предположить, что они являются решением уравнения (1) и случае, если , есть двукратный корень многочлена L (р). Аналогично мы приходим к догадке, что если есть k-кратный корень характеристического многочлена L (р), то решениями уравнения (1) являются все функции: .

Распространяя эту догадку на случай комплексных кратных корней, мы приходим к предположению о справедливости нижеследующей теоремы (являющейся обобщением теоремы 1):

Теорема 2. Пусть (2)-- линейное однородное уравнение порядка n с постоянными коэф фициентами. Пусть, далее, - совокупность всех попарно различных корней характеристического многочлена L(р) уравнения (2), причем корень имеет кратность , так что .

Запишем:

(3)

Тогда все функции (3) являются решениями уравнения (2), так что при любых комплексных постоянных функция

(4)

также является решением этого уравнения. Решение это является общим в том смысле, что каждое решение уравнения (2) может быть получено по формуле (4) при надлежащем выборе констант . При этом константы однозначно определяются для каждого данного решения z. Заметим, что функции (3) определены на всей числовой прямой . Отметим одно очевидное следствие теоремы 2.

А) Каждое решение z(t) уравнения (2) может быть записано в виде:

где есть многочлен степени, не превосходящей числа , . При этом многочлены определены однозначно решением z(t), так как их коэффициенты являются константами интегрирования , которые в силу теоремы 2 определены решением z(t) однозначно. Если коэффициенты уравнения (2) действительны, то перед нами стоит задача выделения из совокупности комплексных решений уравнения (2) его действительных решений.

Б) Будем считать, что коэффициенты характеристического многочлена L(р) уравнения (2) действительны. Пусть -- некоторый корень многочлена L(р) кратности k; тогда при функция является решением уравнения (2). Если корень действительный, то функция действительна, если же корень комплексный, то наряду с решением имеется комплексно-сопряженное ему решение , так как есть корень кратности k многочлена L(р). Таким образом, в системе решений (3) наряду с каждым комплексным решением имеется сопряженное с ним решение. Для того чтобы решение (4) было действительным, необходимо и достаточно, чтобы коэффициенты при действительных решениях были действительными, а коэффициенты у попарно сопряженных комплексных решений были попарно сопряжены.

3. Линейное неоднородное уравнение с постоянными коэффициентами

Здесь будет дано решение линейного уравнения с постоянными коэффициентами со свободным членом специального вида, являющимся так называемым квазимногочленом.

А) Квазимногочленом будем называть всякую функцию F(t), которую можно записать в виде:

(1)

где суть некоторые комплексные числа, а -- многочлены от t. Из предложения А пункта 1.2 следует, что каждое решение линейного однородного уравнения с постоянными коэффициентами является квазимногочленом. Можно доказать, что и обратно, каждый квазимногочлен является решением некоторою линейного однородного уравнения с постоянными коэффициентами. Если какие-нибудь два числа последовательности совпадают между собой, например, если , то члены суммы (1), соответствующие этим числам, можно объединить и заменить членом . Таким образом, запись (1) всегда можно привести к такому виду, что числа , входящие в нее, попарно различны. Отметим, что сумма и произведение двух произвольных квазимногочленов также есть квазимногочлен; далее, если к произвольному квазимногочлену применить произвольный оператор L(p), то мы вновь получим квазимногочлен. Таким образом, в настоящем параграфе будет рассматриваться уравнение

(2)

где F(t) есть некоторый квазимногочлен.

Наряду с уравнением (2) рассмотрим соответствующее однородное уравнение

(3)

Нижеследующее предложение непосредственно вытекает из замечания

Б) Если есть некоторое решение уравнения (2), то произвольное z того же уравнения может быть записано в виде: где u есть некоторое решение уравнения (3).

Так как произвольное решение однородного уравнения мы оты скивать уже умеем, то дело сводится, таким образом, к отысканию одного решения или, как говорят, частного решения уравнения (2) в случае, когда F(t) есть квазимногочлен. Так как, далее, каждый квазимногочлен записывается в виде (1), в силу замечания

В) Все дело сводится к отысканию частного решения уравнения (2) в случае, когда

где f(t) - многочлен. Для этого случая решение отыскивается в нижеследующей теореме. Во избежание недоразумений отметим, что в дальнейшем под многочленом степени r мы будем понимать функцию вида , не предполагая непременно, что старший коэффициент отличен от нуля.

4. Метод исключения

До сих пор мы занимались решением одного линейного уравнения с постоянными коэффициентами. Оказывается, однако, что весьма общую систему линейных уравнений с постоянными коэффициентами можно в некотором смысле свести к одному уравнению. Сведение это осуществляется методом исключения, аналогичным тому, который употребляется в теории линейных алгебраических (не дифференциальных) уравнений. Здесь будет дано изложение этого метода и сделаны некоторые выводы из него.

Мы будем рассматривать систему уравнений

(1)

здесь - неизвестные функции независимого переменного t, а -- заданные функции времени t.

Каждый символ представляет собой многочлен с постоянными коэффициентами относительно оператора дифференцирования р, так что один член представляет собой линейную комбинацию с постоянными коэффициентами относительно функции и ее производных. Число уравнений системы (1) равно числу неизвестных функции.

Порядок системы (1) относительно неизвестной функции обозначим через , так что общий порядок системы (1) определяется формулой .

Ставя задачу решения системы (1), мы, естественно, должны предполагать, что каждая неизвестная функция имеет все производные до порядка включительно; предположение о существовании производных более высоких порядков не вытекает из постановки задачи.

Применяя к системе (1) метод исключения, мы будем предполагать, что каждая из неизвестных функций имеет достаточное число производных, точно так же, как и каждая из функций . Делая эти допущения, мы, с одной стороны, сужаем класс рассматриваемых решений (предположение о достаточной дифференцируемости неизвестных функций), а, с другой стороны, сужаем класс рассматриваемых уравнений (предположение о достаточной дифференцируемости функций ).

Первое из этих ограничений можно снять, доказав, что если есть решение системы (1) и если правые части имеют достаточное число производных, то каждая из функций имеет достаточное число

Перейдем к изложению метода исключения.

А) Рассмотрим матрицу

(2)

системы уравнений (1). Каждый элемент матрицы (2) есть многочлен относительно р. Таким образом, можно вычислить детерминант D(р) матрицы (2) и ее миноры. Алгебраическое дополнение элемента матрицы (2) (т. е. минор этого элемента, взятый с надлежащим знаком) обозначим через . Из курса высшей алгебры известно, что имеет место тождество:

(3)

где есть так называемый символ Кронекера:

Умножая уравнение (1) на многочлен (т.е. производя ряд дифференцирований, умножений на числа и сложений) и суммируя затем по j, мы получаем равенство

(4)

В силу (3) равенство (4) можно переписать в виде

(5)

Полученная нами система уравнений (5) () обладает тем свойством, что каждая неизвестная функция входит лишь в одно уравнение (5). Мы доказали, таким образом, что если система функций представляет собой решение системы (1), то каждая отдельная функция является решением уравнения (5).

Не следует думать, однако, что если для каждого номера i выбрать произвольным образом решение уравнения (5) и затем составить систему функций , то полученная система функций будет решением системы (1). Для того чтобы найти общее решение системы (1), нужно найти общее решение каждого уравнения (5), , составить систему функций и затем выяснить, при каких условиях (при каких соотношениях между постоянными интегрирования) эта система функций удовлетворяет системе уравнений (1).

Сделаем теперь некоторые выводы из метода исключения. Формулируем прежде всего результат, полученный в предложении

А) для случая однородной системы уравнений

(6)

Б) Если система функций представляет собой решение системы (6), то каждая отдельная функция , входящая в это решение, удовлетворяет уравнению где D(p) -- детерминант матрицы системы (6).

Покажем теперь, как, пользуясь методом исключения, следует решать, однородную систему уравнений (6). Систему (6) перепишем в векторной форме

(7)

где - матрица системы (6), а .

В) Допустим, что детерминант D(p) системы (6) не обращается тождественно в нуль, и пусть -- корень многочлена D(p), имеющий кратность k. Будем искать решение уравнения (8), имеющее вид:

(8)

где -- вектор, компоненты

(9)

которого являются многочленами степени k - 1 относительно t с неопределенными коэффициентами. Каждое решение вида (8) уравнения (7) мы будем называть соответствующим корню .

Подставляя предполагаемое решение (8) в уравнение (7), мы получим:

После сокращения на это дает:

(10)

Таким образом, вектор (8) тогда и только тогда является решением уравнения (8), когда многочлены (9) удовлетворяют условию (10). Переписывая векторное уравнение (10) в координатной форме, получим n соотношений:

(11)

Левая часть каждого соотношения (11) представляет собой многочлен степени k - 1 относительно t, коэффициенты которого являются линейными однородными функциями коэффициентов многочленов (9). Приравнивая нулю коэффициент при каждой степени t в каждом из соотношений (11), мы получим систему линейных однородных уравнений относительно коэффициентов многочленов (9). Эта система эквивалентна уравнению (10).

Таким образом, изложенный метод сводит задачу отыскания решений вида (8) к решению некоторой линейной однородной системы алгебраических уравнений. Из сказанного видно, что решения вида (8) определены на всем бесконечном интервале .

Вопрос о том, как отыскать все решения уравнения (7), решается нижеследующей теоремой:

5. Нормальная линейная однородная система с постоянными коэффициентами

Решим систему:

(1)

с постоянными коэффициентами. Эта система может быть решена методом исключения, здесь она решается путем приведения матрицы к жордановой форме. В случае, когда все собственные значения матрицы А различны, возможность приведения ее к жордановой, то есть в данном случае диагональной, форме представляет собой весьма элементарный алгебраический факт. В общем случае возможность приведения матрицы А к жордановой форме относиться к наиболее сложным результатам курса линейной алгебры.

Обычно приведение матрицы А к жордановой форме для решения системы (1) используется путем линейного преобразования неизвестных функций .

В этом разделе мы не будем делать различия между матрицей А и соответствующим ей преобразованием А в пространстве векторов , так как базис меняться не будет.

Случай простых корней характеристического уравнения

А) Система дифференциальных уравнений (1) в векторной форме переписывается в виде:

(2)

Здесь , а вместо системы неизвестных функций введен неизвестный вектор ; под производной вектора х понимается вектор . Если h есть собственный вектор матрицы А с собственным значением т.е. если ,то векторная функция х, определяемая соотношением , является решением уравнения (2). Последнее утверждение проверяется путем подстановки в соотношение (2).

Теорема 3. Пусть

(3)

такая система дифференциальных уравнений. Собственные значения матрицы А попарно различны, и пусть - соответствующие собственные векторы этой матрицы.

Запишем:

(4)

Тогда векторная функция

(5)

где - константы, является решением уравнения (3), и всякое решение уравнения (3) задается этой формулой.

Общий случай.

Перейдем теперь к решению системы (1) в общем случае (матрица может иметь кратные собственные значения). Разбор этого случая опирается на весьма нетривиальную и сложно доказуемую алгебраическую теорему о приведении матрицы к жордановой форме.

В) Запишем систему (1) в векторной форме

(6)

и пусть - некоторая серия с собственным значением относительно матрицы А, так что выполнены соотношения

Введем последовательность векторных функций, положив:

(7)

Оказывается тогда, что векторные функции

(8)

являются решениями уравнения (6), причем

(9)

Таким образом, каждой серии из k векторов соответствует система из k решений.

Перейдем теперь к формулировке и доказательству теоремы, дающей решение системы (1) в общем случае.

Теорема 5.

Пусть (10)- векторная запись системы (1). Существует базис , состоящий из серий относительно матрицы А. Для определенности будем считать, что есть серия с собственным значением ; есть серия с собственным значением ; и т.д. В силу предложения В) каждой из серий соответствует система решений, так что мы можем выписать следующие решения уравнения (10):

(11)

Оказывается, что формула

(12)

где - константы, всегда дает решение уравнения (10) и что каждое решение уравнения (10) описывается формулой (12).

Теперь нам осталось выделить из решений, заданных формулой (12), действительные решения в случае, когда матрица действительна. Делается это совершенно так же, как и в случае простых корней характеристического уравнения.

6. Фазовая плоскость линейной однородной системы с постоянными коэффициентами

Здесь будут построены фазовые траектории на фазовой плоскости системы

(1)

или в векторной форме

(2)

с постоянными действительными коэффициентами . При этом нам придется разобрать, несколько различных случаев, так как фазовая картина траекторий системы существенно зависит от значении коэффициентов. Следует заметить, что начало координат (точка (0, 0)) всегда является положением равновесия системы (1). Это положение равновесия тогда и только тогда является единственным, когда детерминант матрицы отличен от нуля, или, что то же, оба собственных значения этой матрицы отличны от нуля.

Допустим, что собственные значения матрицы А действительны, различны и отличны от нуля. Тогда произвольное действительное решение уравнения (2) можно записать в виде:

(3)

Здесь и -- действительные линейно независимые собственные векторы матрицы А;

и -- его действительные собственные значения,

а и -- действительные константы.

Решение (3) разложим по базису , запишем

(4)

тогда мы будем иметь:

(5)

Координаты на фазовой плоскости Р системы (1) вообще говоря, не являются прямоугольными, поэтому отобразим аффинно фазовую плоскость Р на вспомогательную плоскость Р* таким образом чтобы при этом векторы , перешли во взаимно ортогональные единичные векторы плоскости Р*, направленные соответственно по оси абсцисс и оси ординат (рисунок 1). Точка плоскости Р перейдет при этом отображении в точку с декартовыми прямоугольными координатами в плоскости Р*. Таким образом, траектория заданная, параметрическими уравнениями (5) а плоскости Р перейдет в траекторию (которую мы также назовем фазовой), заданную теми же уравнениями в прямоугольных координатах плоскости Р*. Мы начертим сперва траектории, заданные уравнениями (5) в плоскости Р*, и затем отобразим их обратно в плоскость Р.

Наряду с фазовой траекторией (5) в плоскости Р* имеется траек тория, задаваемая уравнениями

(6)

а также траектория, задаваемая уравнениями

(7)

Траектория (6) получается из траектории (5) зеркальным отражением относительно оси абсцисс, а траектория (7) -- относительно оси ординат. Таким образом, указанные два зеркальных отображения оставляют картину траекторий на плоскости Р* инвариантной. Из этого видно, что если вычертить траектории в первом квадранте, то уже легко представить себе всю фазовую картину в плоскости Р*.Отметим что при мы получаем движение точки, описывающее положение равновесия (0, 0). При получаем движение, описывающее положительную полуось абсцисс, при получаем движение, описывающее положительную полуось ординат. Если , то движение, описывающее положительную полуось абсцисс, протекает в направлении к началу координат, если же , то движение это имеет противоположное направление от начала координат. В первом случае точка движется, неограниченно приближаясь к началу координат, во второй -- неограниченно удаляясь в бесконечность. То же справедливо и относительно движения, описывающего положительную полуось ординат. Если и положительны, то движение точки протекает в первой четверти, не выходя на ее границу.

Дальнейшее, более детальное описание фазовой плоскости проведем отдельно для нескольких случаев - в зависимости от знаков чисел .

А) Узел. Допустим, что оба числа и отличны от нуля и имеют один знак, причем (8) Разберем сперва случай, когда , .

При этих предположениях движение по положительной полуоси абсцисс направлено к началу координат, точно так же, как движение по положительной полуоси ординат. Далее, движение по произвольной траектории внутри первого квадранта состоит в асимптотическом приближении точки к началу координат, причем траектория при этом касается оси абсцисс в начале координат. При t, стремящемся к , точка движется так, что абсцисса и ордината ее бесконечно возрастают, но возрастание ординаты сильнее, чем возрастание абсциссы, т. е. движение идет в направлении оси ординат. Эта фазовая картина называется устойчивом узлом. Если наряду с неравенством (8) выполнены неравенства то траектории остаются прежними, но движение по ним направлено в противоположном направлении. Мы имеем неустойчивый узел.

Б) Седло. Допустим, что числа и имеют противоположные знаки. Для определенности предположим, что . В этом случае движение по положительной полуоси абсцисс идет к началу координат, а движение по положительной полуоси ординат -- от начала координат. Траектории, лежащие внутри первого квадранта, напоминают по своему виду гиперболы, а движения по ним про исходят в направлении к началу вдоль оси абсцисс, и в направлении от начала вдоль оси ординат. Эта фазовая картина называется седлом. Расположение траекторий на фазовой плоскости Р получается из этого с помощью аффинного преобразования и зависят от положения собственных векторов. Рассмотрим теперь случай, когда собственные значения матрицы А комплексны. В этом случае они комплексно сопряжены и могут быть обозначены через и , причем . Собственные векторы матрицы А могут быть выбраны сопряженными, так что их можно обозначить через h и .Запишем:

где и -- действительные векторы.

Векторы и линейно независимы, так как в случае линейной зависимости между ними мы имели бы линейную зависимость между h и . Итак, векторы и можно принять, за базис фазовой плоскости Р уравнения (2).

Произвольное действительное решение уравнения (2) можно записать в виде:

(9)

где с -- комплексная константа.

Пусть

тогда мы имеем:

Отобразим аффинно фазовую плоскость Р на вспомогательную плоскость Р* комплексного переменного так, чтобы вектор перешел в единицу, а вектор - в i; тогда вектору будет соответствовать комплексное число . В силу этого отображения фазовая траектория (9) перейдет в фазовую траекторию на плоскости Р*, описываемую уравнением

(10)

В) Фокус и центр. Перепишем уравнение (10) в полярных координатах, положив

Таким образом, получаем: это есть уравнение движения точки в плоскости Р*. При каждая траектория оказывается логарифмической спиралью. Соответствующая картина на плоскости Р называется фокусом. Если , то точка при возрастании t асимптотически приближается к началу координат, описывая логарифмическую спираль. Это - устойчивый фокус. Если , то точка уходит от начала координат в бесконечность, и мы имеем неустойчивый фокус. Если число равно нулю, то каждая фазовая траектория, кроме положения равновесия (0,0), замкнута, и мы имеем так называемый центр.

Выше мы рассматривали так называемые невырожденные случаи: корни и различны и отличны от нуля. Малое изменение элементов матрицы не меняет в этих предположениях общего характера поведения фазовых траекторий. Исключение составляет случай центра: при малом изменении элементов матрицы равенство может нарушиться, и центр перейдет в устойчивый или неустойчивый фокус.

Решение практических задач

Задание: определить характер точек покоя следующих систем:

а)

б)

в)

Решение : Запишем характеристическое уравнение для каждой системы:

а)

б)

в)

Найдем корни характеристических уравнений:

для этого решим квадратное уравнение, и запишем их корни.

а) ,

.

б) ,

.

в)

Определим знаки корней:

а) ,

.

б) .

в) .

Определим характер точек покоя:

а) Так как корни характеристического уравнения действительные, и имеют разные знаки, и, характером точки покоя данной системы является седло. б) Так как корни характеристического уравнения действительные, имеют одинаковые отрицательные значения, , характером точки покоя данной системы является устойчивый узел.

в) Так как корни характеристического уравнения действительные, имеют одинаковые отрицательные значения, , характером точки покоя данной системы является устойчивый узел.

Выводы: Определение устойчивости и характера точек покоя имеет очень важное значение для описания работы некоторых приборов. Так как характер точек покоя дает представление о фазовом пространстве системы.

В качестве приобретения навыков были охарактеризованы точки покой нескольких систем, в результате обнаружилось, первая система имеет неустойчивую точку покоя типа "седло", вторая и третья системы имеют асимптотически устойчивый узел с точкой покоя типа "устойчивая"

Литература

1. Камке Э. Справочник по обыкновенным дифференциальным уравнениям: - 5-е изд. - М.: Наука, Главная редакция физико-математической литературы, 1976. - 576с.

2. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов, т.2: Учеб. пособие для втузов. - 13-е изд. - М.: Наука, Главная редакция физико-математической литературы, 1985. - 560 с.

3. Понтрягин Л.С. Обыкновенные дифференциальные уравнения: - 4-е изд. - М.: Наука, Главная редакция физико-математической литературы, 1974. - 332с.

4. Турчак Л. И. Основы численных методов: Учеб. пособие. - М.: Наука. Гл. ред. физ.-мат. лит, 1987.

Размещено на Allbest.ru


Подобные документы

  • Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.

    презентация [206,3 K], добавлен 17.09.2013

  • Ознакомление с основными свойствами линейных дифференциальных уравнений первого, второго и n-го порядков с постоянными коэффициентами. Рассмотрение методов решения однородных и неоднородных уравнений и применения их при решении физических задач.

    дипломная работа [181,3 K], добавлен 18.09.2011

  • Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.

    дипломная работа [1,0 M], добавлен 11.04.2009

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

  • Установление прямой зависимости между величинами при изучении явлений природы. Свойства дифференциальных уравнений. Уравнения высших порядков, приводящиеся к квадратурам. Линейные однородные дифференциальные уравнения с постоянными коэффициентами.

    курсовая работа [209,4 K], добавлен 04.01.2016

  • Обобщенные решения линейных дифференциальных уравнений. Основные примеры построения фундаментальных решений линейных дифференциальных операторов с постоянными коэффициентами, метод преобразования Фурье. Преимущества использования методов спуска.

    курсовая работа [1,1 M], добавлен 10.04.2014

  • Оригиналы и изображения функций по Лапласу. Основные теоремы операционного исчисления. Изображения простейших функций. Отыскание оригинала по изображению. Задача Коши для обыкновенных линейных дифференциальных уравнений с постоянными коэффициентами.

    дипломная работа [162,3 K], добавлен 27.05.2008

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга [1,7 M], добавлен 03.10.2011

  • Определение экстремума функционала при определенных заданных условиях. Особенности вычисления гамма-функции. Вычисление значения и решение неоднородного линейного разностного уравнения с постоянными коэффициентами, специфика выполнения проверки решения.

    контрольная работа [53,9 K], добавлен 27.09.2011

  • Многоугольники, теорема Бойяи-Гервина. Лемма о целых решениях системы однородных линейных уравнений с рациональными коэффициентами. Понятия для доказательства теоремы Дена-Кагана. Задача на деление квадрата на восемь остроугольных треугольников.

    курсовая работа [1,3 M], добавлен 27.05.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.