Анализ вероятности
Порядок и принципы построения распределения вероятности занятия линий в пучке из V-линий в соответствии с распределениями Бернулли, Пуассона и Эрланга. Расчет математического ожидания числа занятых линий, их дисперсии и среднеквадратического отклонения.
Рубрика | Математика |
Вид | задача |
Язык | русский |
Дата добавления | 10.12.2015 |
Размер файла | 214,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Задание
1) Построить распределение вероятности занятия линий в пучке из Vлиний в соответствии с распределениями Бернулли, Пуассона и Эрланга.
2) Для каждого распределения рассчитать математическое ожидание числа занятых линий, их дисперсию и среднеквадратическое отклонение.
Величину А принять равной A=aV
а=0,4 Эрл V=6
Решение
вероятность математический бернулли пуассон
1) Распределение Бернулли (биноминальное распределение)
Для вычесления вероятностей Pi можно определить следующей формулой
P0=(1-0,4)=0,6
Распределение Пуассона
A=aV A=0,46=2,4
;
2) Математическое ожидание и дисперсия числа занятых линий, вероятность занятия которых описывается распределением Бернулли, соответственно равны
Для математического ожидания используют среднее арифметическое наблюдаемых значений:
Состоятельная и несмещенная оценка дисперсии вычисляется по следующему выражению:
Оценка среднего квадратического отклонения СВ x вычисляется как корень квадратный из оценки дисперсии
Математическое ожидание и дисперсия СВ, распределенные по закону Пуассона, равны
Mi=Di=A
A=aV A=0,46=2,4
Для математического ожидания используют среднее арифметическое наблюдаемых значений:
Состоятельная и несмещенная оценка дисперсии вычисляется по следующему выражению:
Оценка среднего квадратического отклонения СВ x вычисляется как корень квадратный из оценки дисперсии
Размещено на Allbest.ru
Подобные документы
Вычисление вероятностей возможных значений случайной величины по формуле Бернулли. Расчет математического ожидания, дисперсии, среднеквадратического отклонения, медианы и моды. Нахождение интегральной функции, построение многоугольника распределения.
контрольная работа [162,6 K], добавлен 28.05.2012Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.
контрольная работа [227,6 K], добавлен 28.04.2010Определение вероятности определенного события. Вычисление математического ожидания, дисперсии, среднеквадратического отклонения дискретной случайной величины Х по известному закону ее распределения, заданному таблично. Расчет корреляционных признаков.
контрольная работа [725,5 K], добавлен 12.02.2010Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.
контрольная работа [263,8 K], добавлен 13.01.2014Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа [29,7 K], добавлен 31.05.2010Проверка выполнимости теоремы Бернулли на примере надёжности электрической схемы. Примеры решения задач с игральными костями, выигрыша в лотерею, вероятности брака и др. Биноминальный закон распределения: решение математического ожидания и дисперсии.
контрольная работа [74,4 K], добавлен 31.05.2010Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015Определение математической вероятности правильного набора, если на нечетных местах комбинации стоят одинаковые цифры. Использование классического определения вероятности. Расчет математического ожидания и дисперсии для очков, выпавших на игральных костях.
контрольная работа [90,2 K], добавлен 04.01.2011Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.
контрольная работа [390,7 K], добавлен 29.05.2014