Алгебра событий в теории вероятностей
Существенная характеристика алгебры и сигма-алгебры событий, встречающихся в теории вероятностей. Изучение косвенных методов вычисления возможностей. Свойства операций сложения и умножения явлений. Особенность изучения основных законов де Моргана.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 25.11.2015 |
Размер файла | 45,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки Российской Федерации
«Первый Профессиональный Университет»
Менеджмент
Контрольное задание
По дисциплине: «Математика»
«Алгебра событий»
Выполнил студент:
Кадров Р.Ю.
Москва 2015
Определение
Алгебра событий (в теории вероятностей) -- алгебра подмножеств пространства элементарных событий , элементами которого служат элементарные события.
Как и положено алгебре множеств алгебра событий содержит невозможное событие (пустое множество) и замкнута относительно теоретико-множественных операций, производимых в конечном числе. Достаточно потребовать, чтобы алгебра событий была замкнута относительно двух операций, например, пересечения и дополнения, из чего сразу последует её замкнутость относительно любых других теоретико-множественных операций. Алгебра событий, замкнутая относительно счётного числа теоретико-множественных операций, называется сигма-алгеброй событий.
В теории вероятностей встречаются следующие алгебры и сигма-алгебры событий:
· алгебра конечных подмножеств ;
· сигма-алгебра счётных подмножеств ;
· алгебра подмножеств , образованная конечными объединениями интервалов;
· сигма-алгебра борелевских подмножеств топологического пространства , то есть наименьшая сигма-алгебра, содержащая все открытые подмножества ;
· алгебра цилиндров в пространстве функций и сигма-алгебра, ими порожденная.
Алгебры и сигма-алгебры событий -- это области определения вероятности . Если , то событие называется невозможным событием; если , то событие называется достоверным событием;
Событие A + B или , заключается в том, что из двух событий A и B происходит по крайней мере одно, называется суммой событий A и B.
Любая сигма-аддитивная вероятность на алгебре событий однозначно продолжается до сигма-аддитивной вероятности, определенной на сигма-алгебре событий, порожденной данной алгеброй событий.
Алгебра событий
В прикладных задачах основными являются не прямые, а косвенные методы вычисления вероятностей интересующих нас событий через вероятности других, с ними связанных. Для этого нужно уметь выражать интересующие нас события через другие, т. е. использовать алгебру событий.
Отметим, что все вводимые ниже понятия справедливы тогда, когда события о которых идет речь, представляют собой подмножества одного и того же пространства элементарных событий .
Сумма или объединение событий А1, А2, …, Аn - такое событие А, появление которого в опыте эквивалентно появлению в том же опыте хотя бы одного из событий А1, А2, …, Аn. Сумма обозначается:
где - знак логического сложения событий, - знак логической суммы событий. алгебра вероятность косвенный умножение
Произведение или пересечение событийА1, А2, …, Аn - такое событие А, появление которого в опыте эквивалентно появлению в том же опыте всех событий А1, А2, …, Аn одновременно. Произведение обозначается
где - знак логического умножения событий, - знак логического произведения событий.
Операции сложения и умножения событий обладают рядом свойств, присущих обычным сложению и умножению, а именно: переместительным, сочетательным и распределительным свойствами, которые очевидны и не нуждаются в пояснении.
Суммой (объединением) событий А1 и А2 является событие, состоящее в появлении хотя бы одного из этих событий (заштрихованная область на рис. 3.2, а). Произведение событий А1 и А2 это событие, состоящее в совместном выполнении обоих событий (заштрихованное пересечение событий А1 и А2 - рис. 3.2, б).
Из определения суммы и произведения событий следует, что
А = АА; А = А ; = А ;
А = АА; = А ; А = А .
Если события Аi (i=1, … , n) или { Аi }n i=1 составляют полную группу событий, то их сумма есть достоверное событие
Изображение противоположного события приведено на рис. 3.3. Область дополняет А до полного пространства. Из определения противоположного события следует, что
Другие свойства противоположных событий отражены в законах де Моргана:
поясняемых рис. 3.4.
Список литературы
1. Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. -- изд. четвёртое, переработанное. -- М.: Наука, 1976.
Размещено на Allbest.ru
Подобные документы
Опыт со случайным исходом. Статистическая устойчивость. Понятие вероятности. Алгебра событий. Принцип двойственности для событий. Условные вероятности. Формулы сложения и умножения вероятностей. Формула Байеса. Пространство элементарных событий.
реферат [402,7 K], добавлен 03.12.2007Основные понятия, действия над случайными событиями. Классическое определение, свойства вероятностей. Правила вычисления вероятностей случайных событий. Построение законов распределения вероятностей случайных величин, вычисление числовых характеристик.
задача [82,0 K], добавлен 12.02.2011История и основные этапы становления и развития основ теории вероятности, ее яркие представители и их вклад в развитие данного научного направления. Классификация случайных событий, их разновидности и отличия. Формулы умножения и сложения вероятностей.
контрольная работа [22,6 K], добавлен 20.12.2009Функциональные и степенные ряды. Разложение функций в ряды Тейлора и Макларена. Теорема Дерихле. Основные понятия в теории вероятностей. Теорема умножения и сложения вероятностей независимых событий. Формулы Бейеса, Бернулли. Локальная теорема Лапласа.
методичка [96,6 K], добавлен 25.12.2010Изучение теории вероятностей в ходе школьной программы позволяет развивать у школьников логическое мышление, способность абстрагировать, выделять суть. История теории вероятностей и ее научные основы. Виды событий. Операции со случайными событиями.
дипломная работа [88,6 K], добавлен 22.01.2009Формулировка и доказательство теоремы о сложении вероятностей двух несовместных событий. Следствие теоремы в случае, когда события составляют полную группу несовместных событий, и в случае противоположных событий. Примеры вычисления вероятности событий.
презентация [77,5 K], добавлен 01.11.2013Сущность и предмет теории вероятностей, отражающей закономерности, присущие случайным явлениям массового характера. Изучение ею закономерностей массовых однородных случайных явлений. Описание наиболее популярных в теории вероятностей экспериментов.
презентация [474,2 K], добавлен 17.08.2015Понятие и свойства n-арных операций, универсальной алгебры и сигнатуры. Характеристика централизаторов конгруэнции универсальных алгебр и доказательство их основных свойств. Нильпотентные и абелевы алгебры, формулировка и метод доказательства их лемм.
курсовая работа [399,1 K], добавлен 22.09.2009Типы событий и их общая характеристика: достоверные, невозможные и случайные. Вероятность как количественная характеристика степени возможности наступления события, теорема их сложения и умножения. Свойства случайных величин и их числовые характеристики.
презентация [2,1 M], добавлен 20.09.2014Пространство элементарных событий. Понятие совместных и несовместных событий и их вероятностей. Плотность распределения вероятностей системы двух случайных величин. Числовые характеристики системы. Закон генеральной совокупности и его параметры.
контрольная работа [98,1 K], добавлен 15.06.2012