Производная и её применение
История открытия общего метода для построения касательной в любой точке кривой. Анализ первой печатной работы Г. Лейбница по дифференциальному исчислению. Дифференциал как бесконечно малое приращение. Определение понятия правой и левой производных.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 25.11.2015 |
Размер файла | 500,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.
контрольная работа [75,5 K], добавлен 07.09.2010Задачи, приводящие к понятию производной. Особенности определения с помощью этого основного понятия дифференциального исчисления уравнения касательной к непрерывной кривой в заданной точке, скорости, производительности труда в определенный момент времени.
презентация [263,8 K], добавлен 21.09.2013Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлен 11.01.2004Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация [246,0 K], добавлен 21.09.2013Пределы последовательностей и функций. Производная и дифференциал. Геометрические изложения и дифференцированные исчисления (построение графиков). Неопределенный интеграл. Определенный интеграл. Функции нескольких переменных, дифференцированных исчислений
контрольная работа [186,9 K], добавлен 11.06.2003Функция одной независимой переменной. Свойства пределов. Производная и дифференциал функции, их приложение к решению задач. Понятие первообразной. Формула Ньютона-Лейбница. Приближенные методы вычисления определенного интеграла. Теорема о среднем.
конспект урока [147,7 K], добавлен 23.10.2013Понятие и способы образования плоских и кривых линий. Примеры пересечения алгебраической кривой линии. Поверхность в геометрии. Аргументы вектор-функции. Уравнения семейства линий. Способ построения касательной и нормали в произвольной точке лемнискаты.
контрольная работа [329,5 K], добавлен 19.12.2014Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.
лабораторная работа [718,5 K], добавлен 25.12.2011Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.
курсовая работа [1,3 M], добавлен 30.12.2021Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015