Графіки деяких чудових кривих
Ознайомлення з властивостями алгебраїчних кривих другого порядку: еліпса, гіперболи та параболи. Визначення особливостей кривих третього порядку: конхоїда, епіциклоїда та гіпоциклоїда. Дослідження методів побудови параболічної та логарифмічної спіралі.
Рубрика | Математика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 27.10.2015 |
Размер файла | 4,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Аксіоматика і основні метричні формули псевдоевклідової площини. Канонічні рівняння кривих другого порядку (параболи, еліпса, гіперболи). Елементи загальної теорії кривих другого порядку псевдоевклідової площини. Перетворення координат рівняння.
презентация [787,6 K], добавлен 17.01.2015Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.
курсовая работа [1,9 M], добавлен 13.11.2012Аналіз рівняння еліпсоїда, властивостей кривих і поверхонь другого порядку. Канонічне рівняння гіперболи за допомогою перетворень паралельного переносу й повороту координатних осей. Дослідження форми поверхні другого порядку методом перетину площинами.
курсовая работа [137,1 K], добавлен 27.12.2010Поняття приватного інтеграла. Побудова квадратичних двовимірних стаціонарних систем із приватним інтегралом у вигляді параболи, окружності або гіперболи. Умови існування в системи двох часток інтегралів. Якісне дослідження побудованих класів систем.
дипломная работа [290,0 K], добавлен 14.01.2011Теорія приведення загального рішення кривих і поверхонь другого порядку до канонічного виду в системі побудови графіків. Основні поняття (лінійний оператор, власний вектор і власне значення матриці, характеристичне рівняння, квадратична форма) і теореми.
курсовая работа [328,3 K], добавлен 13.11.2012Проблеми відновлення функції по відомій її похідній для науки та техніки серед множини абелевих інтегралів та алгебраїчних кривих і функцій. Інтегрування виразів до многочленів під коренем як вид еліптичних інтегралів. Перетворення до канонічної форми.
курсовая работа [150,8 K], добавлен 25.05.2009Поняття особливої точки системи або рівняння. Пошук розв’язку характеристичного рівняння. Стійкий та нестійкий вузли, типові траєкторії. Дослідження особливої точки рівняння, способи побудови інтегральних кривих. Власний вектор матриці коефіцієнтів.
контрольная работа [511,4 K], добавлен 18.07.2010Основні вимоги до виконання та оформлення технічної документації, нормативи форматів креслення, допустимі шрифти та розміри літер. Правила побудови спряжень. Поняття та форми лекальних кривих. Порядок нанесення розмірів на кресленнях для різних фігур.
курсовая работа [3,3 M], добавлен 16.11.2009Застосування методів математичного аналізу для знаходження центрів мас кривих, плоских фігур та поверхонь з використанням інтегральних числень функцій однієї та кількох змінних. Поняття визначеного, подвійного, криволінійного та поверхневого інтегралів.
курсовая работа [515,3 K], добавлен 29.06.2011Диференціальні рівняння другого порядку, які допускають пониження порядку. Лінійні диференціальні рівняння II порядку зі сталими коефіцієнтами. Метод варіації довільних сталих як загальний метод розв’язування та й приклад розв’язання задачі Коші.
лекция [202,1 K], добавлен 30.04.2014Сутність гармонічної, квадратичної, логарифмічної прогресій. Аналіз методів доведень алгебраїчних нерівностей за допомогою прогресій. Розв'язання задач на дослідження властивостей середнього степеневого для заданих числових послідовностей та нерівностей.
курсовая работа [396,9 K], добавлен 26.04.2012Рішення основних систем лінійних рівнянь. Визначники другого та третього порядку. Властивості визначників, теорема розкладання. Теорема Крамера для систем рівнянь. Доцільність рішення задачі автоматизованим способом. Ймовірність допущення помилок.
курсовая работа [386,2 K], добавлен 18.12.2010Дослідження диференціального рівняння непарного порядку і деяких систем з непарною кількістю рівнянь на нескінченному проміжку. Побудова диференціальної моделі, що описується диференціальним рівнянням, та дослідження її на скінченому проміжку часу.
дипломная работа [1,4 M], добавлен 24.12.2013Рівняння площини, яка проходить через задану точку перпендикулярно заданому вектору. Опис прямої лінії у просторі. Взаємне розташування прямої та площини. Поверхні другого порядку. Параметричні рівняння ліній. Приклади їх побудови в полярних координатах.
лекция [252,5 K], добавлен 30.04.2014Рішення з заданим ступенем точності задачі Коші для системи диференціальних рівнянь на заданому інтервалі. Формування мінімальної погрішності на другому кінці. Графіки отриманих рішень і порівняння їх з точним рішенням. Опис математичних методів рішення.
курсовая работа [258,9 K], добавлен 27.12.2010Пов’язування поточних координат лінії з заданими геометричними параметрами, одержання рівняння лінії. Визначення прямої на площині. Задачі на взаємне розташування прямих. Криві другого порядку: коло, еліпс, гіпербола та парабола, їх властивості.
презентация [239,4 K], добавлен 30.04.2014Ознайомлення із формулюваннями задач на побудову; застосування методів геометричного місця точок, центральної та осьової симетрії, паралельного переносу та повороту для їх розв'язання. Правила побудови шуканих фігур за допомогою циркуля і лінійки.
курсовая работа [361,7 K], добавлен 04.12.2011Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.
лекция [126,9 K], добавлен 30.04.2014Визначення та властивості упорядкованих множин, приклади діаграм. Дистрибутивні ґрати як один з основних алгебраїчних об'єктів. Поняття нижньої і точної грані, їх властивості та приклади, доказ лем. Застосування та суть топологічних стоунових просторів.
курсовая работа [288,0 K], добавлен 24.03.2011Диференціальні операції другого порядку. Потік векторного поля. Формула Остроградського-Гаусса в векторній формі. Властивості соленоїдального поля. Інваріантне означення дивергенції. Формула Стокса у векторній формі. Властивості потенціального поля.
реферат [237,9 K], добавлен 15.03.2011