История возникновения комплексных чисел
Установление возникновения необходимости извлекать квадратные корни из отрицательных чисел. Особенности использования аппарата комплексных чисел. Основные понятия и арифметические действия над ними. Определение основных свойств операции сопряжения.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 03.11.2015 |
Размер файла | 23,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
История возникновения комплексных чисел
В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел.
В связи с решением алгебраических уравнений 3-ей степени, а позднее, и уравнений 2-ой степени. Некоторые итальянские математики того времени (- Сципион дель Ферро, Николо Тарталья, Джироломо Кардано, Рафаэль Бомбелли) ввели в рассмотрение символ v-1 как формальное решение уравнения х2+1=0, а также выражение более общего вида (а+b*v-1) для записи решения уравнения (х-а)2+b2=0. Впоследствии выражения вида (а+b*v-1) стали называть «мнимыми», а затем «комплексными» числами и записывать их в виде (а+bi) (символ i для обозначения v-1 ввел Леонард Эйлер в XVIII в.). Этих чисел, чисел новой природы оказалось достаточно для решения любого квадратного уравнения (включая случай D < 0), а также уравнения 3-ей и 4-ой степени.
Математики XVI в. и следующих поколений вплоть до начала XIX века относились к комплексным числам с явным недоверием и предубеждением. Они считали эти числа «мнимыми» (Декарт), «несуществующими», «вымышленными», «возникшими от избыточного мудрствования» (Кардано)… Лейбниц называл эти числа «изящным и чудесным убежищем божественного духа», а v-1 считал символом потустороннего мира (и даже завещал начертать его на своей могиле).
Однако использование аппарата комплексных чисел (несмотря на подозрительное к ним отношение), позволило решить многие трудные задачи. Поэтому со временем комплексные числа занимали все более важное положение в математике и ее приложениях. В первую очередь они глубоко проникали в теорию алгебраических уравнений, существенно упростив их изучение. Например, один из трудных вопросов для математиков XVII-XVIII веков состоял в определении числа корней алгебраического уравнения n-ой степени, т.е. уравнения вида a0*xn+a1*xn-1+…+an-1*x+an=0. Ответ на этот вопрос, как оказалось, зависит от того, среди каких чисел - действительных или комплексных - следует искать корни этого уравнения. Если ограничиться действительными корнями, то можно лишь утверждать, что их не больше, чем n. А если считать допустимым наличие и комплексных решений, то ответ на поставленный вопрос получается исчерпывающий: любое алгебраическое уравнение степени n (n?1) имеет ровно n корней (действительных или комплексных), если каждый корень считать столько раз, какова его кратность (а это - число совпадающих с ним корней). При n?5 общее алгебраическое уравнение степени n неразрешимо в радикалах, т.е. не существует формулы, выражающей его корни через коэффициенты с помощью арифметических операций и извлечения корней натуральной степени.
После того как в XIX в появилось наглядное геометрическое изображение комплексных чисел с помощью точек плоскости и векторов на плоскости (Гаусс в 1831 г, Вессель в 1799 г, Арган в 1806 г), стало возможным сводить к комплексным числам и уравнениям для них многие задачи естествознания, особенно гидро- и аэродинамики, электротехники, теории упругости и прочности, а также геодезии и картографии. С этого времени существование «мнимых», или комплексных чисел стало общепризнанным фактом и они получили такое же реальное содержание, как и числа действительные. К настоящему времени изучение комплексных чисел развилось в важнейший раздел современной математики - теорию функций комплексного переменного (ТФКП).
Понятие комплексных чисел
Комплексным числом называется выражение вида a + ib , где a и b - любые действительные числа, i - специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:
Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
a = b и c = d .
Суммой двух комплексных чисел a + ib и c + id называется комплексное число
a + c + i ( b + d ).
Произведением двух комплексных чисел a + ib и c + id называется комплексное число
ac - bd + i ( ad + bc ).
Комплексные числа часто обозначают одной буквой, например, z = a + ib . Действительное число a называется действительной частью комплексного числа z , действительная часть обозначается a = Re z . Действительное число b называется мнимой частью комплексного числа z , мнимая часть обозначается b = Im z . Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.
Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,
Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно.
В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми . Часто просто пишут bi , например, 0 + i 3 = 3 i . Чисто мнимое число i 1 = 1 i = i обладает удивительным свойством:
Таким образом,
Основные понятия и арифметические действия над комплексными числами.
Логически строгую теорию комплексных чисел построил в XIX в (1835 г) ирландский математик Вильям Роумен Гамильтон. По Гамильтону комплексные числа - это упорядоченные пары z=(x,y) действительных чисел, для которых следующим образом определены операции сложения и умножения:
(x1,y1)+(x2,y2)=(x1+x2, y1+y2); (1)
(x1,y1)*(x2,y2)=(x1*x2 - yiy2, xiy2 + x2y1). (2)
Действительные числа x и y называются при этом действительной и мнимой частями комплексного числа z=(x,y) и обозначаются символами Rez и Imz соответственно (real - действительный, imanginerum - мнимый).
Два комплексных числа z1=(x1,y1) и z2=(x2,y2) называются равными только в том случае, когда x1=x2 и y1=y2. Из определения следует, что всякое комплексное число (x,y) может быть представлено в следующем виде: (x,y)=(x,0)+(0,1)(y,0). (3)
Числа вида (х,0) отождествляются с действительными числами х, т.е. (х,0)=х, число (0,1), называемое мнимой единицей, обозначается символом i, т.е. (0,1)=i, причем i2=-1, равенство (3) принимает вид z=x+iy и называется алгебраической формой записи комплексного числа z=(x,y).
Операции сложения и умножения комплексных чисел имеют следующие свойства:
а) z1+z2=z2+z1 (переместительный закон или коммутативность сложения и умножения)
б) z1z2=z2z1
в) z1+(z2+z3)=(z1+z2)+z3 (сочетательный закон или ассоциативность)
г) z1(z2z3)=(z1z2)z3
д) (z1+z2)z3=z1z3+z2z3 (распределительный закон или дистрибутивность)
Вычитание и деление комплексных чисел z1=x1+iy1 и z2=x2+iy2 определяют, причем однозначно, их разность z1-z2 и частное z1/z2 как решения соответствующих уравнений z+z2=z1 и zz2=z1 (при z2?0). Отсюда следует, что разность и частное от деления z1 на z2 вычисляются по формулам:
z1-z2=(x1-x2)+i(y1-y2), (4)
z1/z2=(x1x2+y1y2)/(x22+y22) + i((y1x2-x1y2)/(x22+y22)) (5)
Данное определение можно выразить в других терминах, а именно, вычитание - как действие, обратное сложению: z=z1+(-z2), где число (-z2) называется противоположным z2; деление - как действие, обратное умножению: z=z1(z2-1), где z2-1 - число, обратное для z2 (z2?0). Таким образом, анализ определений и свойств арифметических операций над комплексными числами приводит к следующим выводам:
- множество комплексных чисел (С) является расширением множества R действительных чисел, т.е. действительные числа содержатся как частный случай, среди комплексных (точно так же как, например, целые числа содержатся среди действительных);
- комплексные числа можно складывать, вычитать, умножать и делить по правилам, которым подчиняются действительные числа, заменяя в итоге (или в процессе вычислений) i2=-1.
2. Геометрическое изображение комплексных чисел. Тригонометрическая и показательная формы.
Замечание. Понятия «больше» или «меньше» для комплексных чисел лишено смысла (не принято никакого соглашения).
Если на плоскости введена декартова система координат 0xy, то всякому комплексному числу z=x+iy может быть поставлена в соответствие некоторая точка М(х,у) с абсциссой «х» и ординатой «у», а также радиус - вектор 0М. При этом говорят, что точка М(х,у) (или радиус - вектор 0М) изображает комплексное число z=x+iy.
Плоскость, на которой изображаются комплексные числа называется комплексной плоскостью, ось 0у - мнимой осью.
Число r=vx2+y2-, равное длине вектора, изображающего комплексное число, т.е. расстоянию от начала координат до изображающей это число точки, называется модулем комплексного числа z=x+iy и обозначается символом |z|.
Угол ?=(0М,?0х) между положительным направлением оси 0х и вектором 0М, изображающим комплексное число z=x+iy ?0, называется его аргументом.
Из определения видно, что каждое комплексное число (?0), имеет бесконечное множество аргументов. Все они отличаются друг от друга на целые кратные 2? и обозначаются единым символом Argz (для числа z=0 аргумент не определяется, не имеет смысла).
Каждое значение аргумента совпадает с величиной некоторого угла, на который следует повернуть действительную ось (ось 0ч) до совпадения ее направления с направлением радиус-вектора точки М, изображающей число z (при этом ? > 0, если поворот совершается против часовой стрелки и <0 в противном случае). Таким образом, аргумент комплексного числа z=x+iy 0 есть всякое решение системы уравнений cos=x/vx2+y2; sin?=y/vx2+y2.
Значение Argz при условии 0Argz<2 называется главным значением аргумента и обозначается символом argz. В некоторых случаях главным значением аргумента считают наименьшее по абсолютной величине его значения, т.е. значение, выделяемое неравенством -<???.
Между алгебраическими х, у и геометрическими r, ? характеристиками комплексного числа существует связь, выражаемая формулами x=rcos, y=rsin?, следовательно, z=x+iy=r(cos+isin). Последнее выражение, т.е. z= r(cos+isin) (6) называется тригонометрической формой комплексного числа. Любое число z?0 может быть представлено в тригонометрической форме.
Для практики число вида (cos+isin) удобнее записывать короче, с помощью символа ei=cos+isin (7). Доказанное для любых чисел (действительных или комплексных) это равенство называется формулой Эйлера. С ее помощью всякое комплексное число может быть записано в показательной форме z=rei (8)
3. Операция сопряжения и ее свойства.
Для данного комплексного числа z=x+iy число x-iy (отличающееся от z лишь знаком при мнимой части) называется сопряженным и обозначается символом z. Переход от числа z к числу z называется сопряжением, а сами эти числа сопряженными (друг к другу), т.к. (z)=z. Из определения следует, что только действительное число сопряжено самому себе. Геометрически сопряженные числа изображаются точками, симметричными относительно действительной оси (рис.2).
Отсюда следует, что |z|=|z|, argz=-argz. Кроме того,
квадратный сопряжение число операция
z+z=2x=2Rez;
z-z=2iy=2iImz;
zz=x2+y2=|z|2,
а также: z1+z2=z1+z2; z1z2=z1z2; (z1/z2)=z1/z2; P(z)=P(z), где Р (z) - любой многочлен с действительными коэффициентами; (P(z)/Q(z))=(P(z)/Q(z)), где P и Q - многочлены с действительными коэффициентами.
4. Извлечение корней.
Извлечение корня из комплексного числа есть действие, обратное возведению в степень. С его помощью по данной степени (подкоренное число) и данному показателю степени (показатель корня) находят основание (корень). Иначе говоря, это действие равносильно решению уравнения zn=a для нахождения z. В множестве комплексных чисел действие извлечения корня всегда выполнимо, хотя причем и неоднозначно: в результате получается столько значений, каков показатель корня. В частности, квадратный корень имеет ровно два значения, которые можно найти по формуле:
va=v?+i?=±((v|a|+?)/2 ± i(v|a|-?)/2)), где знак «+» в скобках берется при ?>0, «-» - при ?<0.
5. Геометрический смысл алгебраических операций.
Пусть даны два комплексных числа z1 и z2. В результате сложения этих чисел получается число z3, изображаемое вектором 0С диагонали параллелограмма 0АСВ (по правилу параллелограмма сложения векторов): z1+z2=0A+0B=0C=z3.
Разность (z1-z2) данных чисел, соответствующая их вычитанию, можно рассматривать как сумму вектора 0А, изображающего число z1 и вектора 0D=--0В, противоположного вектору 0В (симметричного ему относительно начала координат): z1-z2=z1+(-z2)=0A+0D=0E=BA. Таким образом, разности (z1-z2) данных чисел соответствует вектор ВА другой диагонали параллелограмма 0АСВ.
Размещено на Allbest.ru
Подобные документы
История комплексных чисел. Соглашение о комплексных числах. Геометрический смысл сложения и вычитания комплексных чисел. Геометрическая интерпретация комплексных чисел. Длина отрезка. Уравнение высших степеней, уравнение деления круга на пять частей.
реферат [325,7 K], добавлен 25.10.2012Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Мнимые и действительные, равные и сопряжённые комплексные числа; модуль и аргумент. Арифметические действия над множеством комплексных чисел: сумма, разность, произведение, деление. Представление комплексных чисел на координатной комплексной плоскости.
презентация [60,3 K], добавлен 17.09.2013Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа [25,7 K], добавлен 29.05.2012Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.
научная работа [20,2 K], добавлен 29.12.2006Расчет значений комплексных чисел в алгебраической, тригонометрической и показательной формах. Определение расстояния между точками на комплексной плоскости. Решение уравнения на множестве комплексных чисел. Методы Крамера, обратной матрицы и Гаусса.
контрольная работа [152,7 K], добавлен 12.11.2012Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.
курсовая работа [1,1 M], добавлен 15.06.2011История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация [178,6 K], добавлен 13.05.2011Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.
дипломная работа [1,1 M], добавлен 10.12.2008