Операторний підхід до сильної проблеми моментів Гамбургера

Зведення сильної проблеми моментів до задачі опису усіх самоспряжених розширень деякого симетричного оператора у гільбертовому просторі. Застосування теорії репрезентацій симетричних операторів та метода просторів граничних значень для опису рішень.

Рубрика Математика
Вид автореферат
Язык украинский
Дата добавления 14.09.2015
Размер файла 230,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Характерні особливості застосування визначених і подвійних інтегралів, криволінійних і поверхневих інтегралів першого роду для обчислення статичних моментів, моментів сили та моментів матеріальної поверхні. Приклади знаходження вказаних фізичних величин.

    реферат [694,9 K], добавлен 29.06.2011

  • Означення і найпростіші властивості лінійних операторів. Контрольний приклад отримання власних значень. Матриця лінійного оператора. Опис та текст програми. Власні вектори й значення лінійного оператора. Теорія лінійних просторів та її застосування.

    курсовая работа [74,8 K], добавлен 28.03.2009

  • Введення поняття інтеграла Стільєса та його розробка. Визначення проблеми моментів. Загальні умови та класи випадків існування інтеграла Стільєса. Теорема про середній. Застосування інтеграла Стільєса в теорії ймовірностей та у квантовій механіці.

    дипломная работа [797,1 K], добавлен 25.02.2011

  • Етапи розвитку теорії ймовірностей як науки. Ігри казино як предмет математичного аналізу. Біологічна мінливість і імовірність. Застосування розподілів ймовірностей як спосіб опису біологічної мінливості. Помилкова точність та правила округлення чисел.

    реферат [26,4 K], добавлен 27.02.2011

  • Поняття та особливості алгоритмів обчислювальних процедур. Операторні та предикатні алгоритми, їх характеристика, порядок та принципи формування, етапи розв'язання. Алгоритмічні проблеми для L. Логіка висловлень та предикатів в представленні знань.

    курс лекций [96,3 K], добавлен 25.03.2011

  • Поняття лінійного оператора, алгебраїчні операції над ним та базові властивості. Лінійні перетворення (оператори) із простору V в W. Матриця лінійного оператора. Перетворення матриці оператора при заміні базису. власні значення і власні вектори.

    курсовая работа [452,3 K], добавлен 25.03.2011

  • Зведення до канонічного вигляду кривих і поверхонь другого порядку методом ортогональних перетворень, побудова їх за заданими канонічними рівняннями. Визначення лінійних операторів та квадратичних форм. Власні вектори та значення лінійного оператора.

    курсовая работа [1,9 M], добавлен 13.11.2012

  • Елементи загальної теорії багатомірних просторів, аксіоматика Вейля. Геометрія k-площин в афінному і евклідовому просторах: паралелепіпеди, симплекси, кулі. Застосування багатомірної геометрії: простір-час класичної механіки і теорії відносності.

    дипломная работа [1,0 M], добавлен 28.01.2011

  • Ознайомлення з історією виникнення теорії множин. Способи опису характеристичних властивостей множин. Декартовий добуток та бінарні відношення. Ін’єктивні, сюр’єктивні та бієктивні відображення. Поняття та властивості бінарної алгебраїчної операції.

    лекция [2,5 M], добавлен 28.10.2014

  • Характеристика послідовності незалежних випробувань, застосування формул Бернуллі, Пусона, локальної та інтегральної теореми Лапласа. Аналіз моментів біноміального розподілу. Оцінка дисперсії. Математична теорія експерименту у техніко-економічних задачах.

    контрольная работа [94,5 K], добавлен 19.02.2010

  • Вивчення теоретичних положень про симетричні многочлени і їх властивості: загальне поняття і характеристика властивостей. Математичне вживання симетричних многочленів: розв'язування систем рівнянь, доведення тотожності, звільнення від ірраціональності.

    курсовая работа [1,3 M], добавлен 04.04.2011

  • Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.

    практическая работа [42,3 K], добавлен 09.11.2009

  • Використання методу Монтгомері як ефективний шлях багаторазового зведення за модулем. Складність операцій з многочленами та обчислення їх значень. Алгоритм Руфіні-Горнера. Визначення рекурсивного процесу для множення. Доведення алгоритму Тоома-Кука.

    контрольная работа [103,8 K], добавлен 07.02.2011

  • Застосування конгруенцій: ознаки подільності, перевірка арифметичних дій, перетворення десяткового дробу у звичайний та навпаки, індекси. Вчені, що займалися питанням застосування конгруенцій. Основні теореми в теорії конгруенцій - Ейлера і Ферма.

    курсовая работа [226,2 K], добавлен 04.06.2011

  • Основні поняття теорії диференціальних рівнянь. Лінійні диференціальні рівняння I порядку. Рівняння з відокремлюваними змінними. Розв’язування задачі Коші. Зведення до рівняння з відокремлюваними змінними шляхом введення нової залежної змінної.

    лекция [126,9 K], добавлен 30.04.2014

  • Задача продавлення шкідливих збурень. Збурювальні задачі, що видвинуті для розгляду радіотехнікою, в деякому розуміння протилежні задачам класичної теорії збурень. Дійснi нелінійнi диференціальнi рівняння. Завдання радіотехніки, задачі генерації збурень.

    дипломная работа [890,8 K], добавлен 17.06.2008

  • Поняття статистичного зведення та його види. Основні завдання методології статистичних групувань. Класифікація в правовій статистиці. Правила до статистичних таблиць та статистичні ряди розподілу. Взаємозв`язок між факторною і результативною ознаками.

    курсовая работа [55,1 K], добавлен 05.02.2011

  • Просторова декартова прямокутна система координат. Рівняння прямої та площини у просторі. Умова паралельності та перпендикулярності двох прямих, двох площин, прямої та площини у просторі. Доказ координатним методом теореми про три перпендикуляри.

    курсовая работа [59,7 K], добавлен 22.09.2003

  • Етапи розв'язування задачі дослідження певного фізичного явища чи процесу, зведення її до диференціального рівняння. Методика та схема складання диференціальних рівнянь. Приклади розв'язування прикладних задач за допомогою диференціального рівняння.

    контрольная работа [723,3 K], добавлен 07.01.2016

  • Температурні поля в напівобмежених багатошарових ортотропних клиновидних циліндрично-кругових областях: напівобмеженому циліндрично-круговому просторі та просторі з порожниною, напівобмеженому суцільному та порожнистому циліндрично-круговому тілі.

    курсовая работа [1,3 M], добавлен 02.02.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.