Математика как наука и этапы ее развития

Определение математики и анализ этапов ее развития: элементарная математика; математика переменных величин; аналитическая геометрия; дифференциальное и интегральное исчисление. Развитие математики в России в 18-19 ст. Достижения современной математики.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 08.09.2015
Размер файла 20,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

БПОУ СПО “Горно-Алтайск педагогический колледж”

РЕФЕРАТ

По математике

Математика как наука и этапы ее развития

Студента 26 группы Школьного

Алтайского отделения

Лебединского Ярослава

Вячеславовича

3 семестр

Горно-Алтайск 2015

План

Введение

1. Математика как наука

2. Период элементарной математики

3. Период создания математики переменных величин. Создание Аналитической геометрии, Дифференциального и Интегрального исчисления

4. Развитие математики в России в XVIII-XIX столетиях

5. Основные этапы становления современной математики

Заключение

Литература

Введение

Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом пальцы рук и ног. Наскальный рисунок, сохранившийся до наших времен от каменного века, изображает число 35 в виде серии выстроенных в ряд 35 палочек-пальцев. Первыми существенными успехами в арифметике стали концептуализация числа и изобретение четырех основных действий: сложения, вычитания, умножения и деления. Первые достижения геометрии связаны с такими простыми понятиями, как прямая и окружность. Дальнейшее развитие математики началось примерно в 3000 до н. э. благодаря вавилонянам и египтянам. И постепенно математика става незаменимой наукой человечества.

1. Математика как наука

Математика -- слово, пришедшее к нам из Древней Греции: mathema переводится как «познание, наука». Математика -- это наука о количест­венных отношениях и пространственных формах действительного мира.

Вот несколько определений математики от разных авторов.

Математика - это цикл наук, изучающих величины и пространственные формы (арифметика, алгебра, геометрия, тригонометрия и т. д.). Чистая математика. Прикладная математика. Высшая математика.( Толковый словарь русского языка Д.Н.Ушакова)

Математика - Учебный предмет, содержащий теоретические основы данной научной дисциплины.( толковый словарь русского языка Т.Ф.Ефремовой).

2. Период элементарной математики

Из дошедших до нас математических документов Востока можно заключить, что в Древнем Египте были сильны развиты отрасли математики, связанные с решением экономических задач. Папирус Райнда (ок. 2000 г. до н.э.) начинался с обещания научить "совершенному и основательному исследованию всех вещей, пониманию их сущностей, познанию всех тайн". Египтяне пользовались двумя системами письма. Одна - иероглифическая - встречается на памятниках и могильных плитах, каждый символ изображает какой-нибудь предмет. В другой системе - иератической - использовались условные знаки, которые произошли из иероглифов в результате упрощений и стилизаций. Иероглифическая система счисления имеет основание 10 и не является позиционной: для обозначения чисел 1, 10, 100 и т.д. в ней используется разные символы, каждый символ повторяется определенное число раз, и, чтобы прочитать число, нужно просуммировать значения всех символов, входящих в его запись. Таким образом, их порядок не играет роли, и они записываются либо горизонтально, либо вертикально. Математика Вавилона, как и египетская, была вызвана к жизни потребностями производственной деятельности, поскольку решались задачи, связанные с нуждами орошения, строительства, хозяйственного учета, отношениями собственности, исчислением времени. Сохранившееся документы показывают, что, основываясь на 60-ричной системе счисления, вавилоняне могли выполнять четыре арифметических действия, имелись таблицы квадратных корней, кубов кубических корней, сумм квадратов и кубов, степеней данного числа, были известны правила суммирования прогрессий. Решение задач проводилось по плану, задачи сводились к единому «нормальному» виду и затем решались по общим правилам. Встречались задачи, сводящиеся к решению уравнений третьей степени и особых видов уравнений четвертой, пятой и шестой степеней.В ней используются всего два разных символа: один обозначает единицу, второй - число 10; все числа записываются при помощи этих двух символов с учетом позиционного принципа. В самых древних текстах (около 1700 г. до н.э.) не встречается никакого символа для обозначения нуля; таким образом, численное значение, которое придавалось символу, зависело от условий задачи, и один и тот же символ мог обозначать 1, 60, 3600 или даже 1/60, 1/3600. Также в математике была сильна Греция. математика элементарный геометрия исчисление

Восточная математика возникла как прикладная наука, имевшая целью облегчить календарные расчеты распределения урожая и сбора налогов. В начале главным делом были арифметические расчеты и измерения. Однако с течением времени из арифметики выросла алгебра, а из измерений возникли зачатки теоретической геометрии.На Востоке возникла система, основанная на десятичной системе счисления со специальными знаками для каждой десятичной единицы более высокого разряда - системе, которая нам знакома, благодаря римскому исчислению, основанному на том же принципе. Именно на востоке определено значение р. Следующим был период Александрии. Одно из крупнейших произведений этого периода стало «Великое собрание» Птолемея. Там мы находим теорему о четырехугольниках, вписанном в окружность. В «Сферике» Менелая мы находим теорему о треугольнике в обобщенном для сферы виде. Но, тем не менее, Александрийская школа медленно умирала вместе с упадком античного общества.Наиболее развитой частью римской империи всегда был восток. Земледелие запада было экстенсивным, никогда не имело в своей основе орошения и это содействовало астрономическим исследованиям. Мало подвижная цивилизация западной римской империи сохранялась в течение столетий. Итальянские купцы посещали восток и знакомились с его цивилизацией. Одним из ученых этого периода был Леонардо из Пизы (Фибоначчи). Он написал свою «Книгу Абака», заполненную алгебраическими и арифметическими сведениями, собранными во время путешествия. В книге «Практика геометрии» Леонардо рассказывает о том, что он открыл в области геометрии и тригонометрии. Интерес к математике стал распространяться на северные города. Период элементарной математики заканчивается, когда центр тяжести математических интересов переносится в область математики переменных величин. Еще в математике Древнего мира на материале изучения тригонометрических функций и при составлении их таблиц формируются представления о функциональной зависимости. Таким образом, весь период до 17 в. остается периодом элементарной математики. В целом же математика прошла гигантский путь в этот период от зарождения счета на пальцах до сложнейших теорем.

3.Период создания математики переменных величин. Создание Аналитической геометрии, Дифференциального и Интегрального исчисления

В XVII в. начинается новый период истории математики - период математики переменных величин. Его возникновение связано, прежде всего, с успехами астрономии и механики.

Кеплер в 1609-1619 гг. открыл и математически сформулировал законы движения планет. Галилей к 1638 г. создал механику свободного движения тел, основал теорию упругости, применил математические методы для изучения движения, для отыскания закономерностей между путем движения, его скоростью и ускорением. Ньютон к 1686 г. сформулировал закон всемирного тяготения.

Первым решительным шагом в создании математики переменных величин было появление книги Декарта «Геометрия». Основными заслугами Декарта перед математикой являются введение им переменной величины и создание аналитической геометрии. Прежде всего, его интересовала геометрия движения, и, применив к исследованию объектов алгебраические методы, он стал создателем аналитической геометрии. К 60-м годам XVII в. были разработаны многочисленные метолы для вычисления площадей, ограниченных различными кривыми линиями. Нужен был только один толчок, чтобы из разрозненных приемов создать единое интегральное исчисление. XVIII в. дал математике мощный аппарат - анализ бесконечно малых. В этот период Эйлер ввел в математику символ f (x) для функции и показал, что функциональная зависимость является основным объектом изучения математического анализа. Разрабатывались способы вычисления частных производных, кратных и криволинейных интегралов, дифференциалов от функций многих переменных. В XVIII в. из математического анализа выделился ряд важных математических дисциплин: теория дифференциальных уравнений, вариационное исчисление. В это время началась разработка теории вероятностей.

4.Развитие математики в России в XVIII-XIX столетиях

В Древней Руси получила распространение сходная с греко-византийской система числовых знаков, основанная на славянском алфавите. Славянская нумерация в русской математической литературе встречается до начала 18 века, но уже с конца 16 века эту нумерацию всё более вытесняет принятая ныне десятичная позиционная система. Наиболее древнее известное нам математическое произведение относится к 1136 и принадлежит новгородскому монаху Кирику. Оно посвящено арифметико-хронологическим расчётам, которые показывают, что в то время на Руси умели решать сложную задачу вычисления пасхалий, сводящуюся в своей математической части к решению в целых числах неопределённых уравнений первой степени. Трудно сказать, кого следует считать первыми русскими математиками, но если иметь в виду людей, свободно владевших современным математическим анализом и писавших работы по этому предмету, то этими первенцами русской математики были, по-видимому, С. К. Котельников и С. Я. Румовский.

С. К. Котельников самостоятельным творчеством не занимался, хотя и написал нечто вроде основного курса математики, но ограничился изданием первого тома. Кроме того Котельников написал еще обстоятельный учебник геодезии.

Что касается Румовского, то он посвятил себя астрономии. Занимая в течение 30 лет кафедру астрономии, он много занимался теоретической и практической деятельностью. Он содействовал становлению русской картографии, напечатал каталог астрономических пунктов, организовав наблюдение за прохождением Венеры по диску солнца в 1769 году. Некоторые сочинения Румовского были посвящены чистой математике, как, например, "Сокращенная математика".

К самому концу XVIII столетия выдвигаются еще некоторые русские математики, так же, как и их предшественники, не внесшие еще серьезных вкладов в науку, но основательно изучившие математику, преподававшие ее в различных учебных заведениях и опубликовавшие ряд сочинений. Сюда относится в первую очередь Василий Иванович Висковатов. Висковатов опубликовал несколько мемуаров в изданиях Академии, а также руководство по элементарной алгебре. Он перевел и издал "Основы механики" Боссю и выпустил новое издание алгебры Эйлера.

Современником Висковатова был Семен Емельянович Гурьев, избранный в Академию в 1800 году. Он уже делает смелую попытку улучшать Евклида. В 1798 году он выпустил сочинение "Опыт усовершенствования элементов геометрии". Автор приобщается здесь к тому классу математиков, которых не удовлетворяют рассуждения Евклида.

В первой половине XIX столетия не выработалась преемственная школа русских математиков, но молодая русская математика уже в первый период своего развития дала выдающихся представителей в различных отраслях этой трудной науки, один из которых уже в первой половине столетия вписал свое имя в историю человеческой мысли.

5.Основные этапы становления современной математики

В XIX веке начинается новый период в развитии математики - современный. Накопленный в XVII и XVIII вв. огромный материал привел к необходимости углубленного логического анализа и объединения его с новых точек зрения. Связь математики с естествознанием приобретает теперь более сложные формы. Новые теории возникают не только в результате запросов естествознания или техники, а также из внутренних потребностей самой математики.

Усиленно разрабатывается теория дифференциальных уравнений с частными производными и теория потенциала. В этом направлении работают большинство крупных аналитиков начала и середины XIX века: К.Гаусс, Ж.Фурье, С.Пуассон, О.Коши, П.Дирихле, М.В.Остроградский. Во второй половине XIX в. начинается интенсивная разработка вопросов истории математики. Чрезвычайное развитие получают в конце XIX в. и в XX в. все разделы математики, начиная с самого старого из них - теории чисел. Теория дифференциальных уравнений с частными производными еще в конце XIX в. получает существенно новый вид. Значительным дополнением к методам теории дифференциальных уравнений при изучении природы и решении технических задач являются методы теории вероятностей. В конце XIX в. и в XX в. большое внимание уделяется методам численного интегрирования дифференциальных уравнений. Таким образом, разработанные в первой половине XIX века способы обоснования и методы математики позволили математикам перестроить математический анализ, алгебру, учение о числе и отчасти геометрию в соответствии с требованиями новой методологии. Новая методология математики способствовала преодолению кризиса её основ и создала для неё широкие перспективы дальнейшего развития Дальнейшее развитие математики, вплоть до конца 19-го - начала 20-го веков имело в основном прагматический характер, когда математика применялась как эффективное средство для решения физических, астрономических и других прикладных задач

К числу основных достижений 20-го века в области оснований математики следует отнести:

1.Выработку понятия формального языка и формальной системы (исчисления) и порождаемой ею теории.

2.Создание математической логики в виде непротиворечивой семантически полной формальной системы.

3.Создание аксиоматизированных формальных теорий арифметики, теории множеств, алгебраических систем и других важных разделов математики.

4.Формальное уточнение понятий алгоритма и вычислимой функции.

Заключение

Математическое моделирование, универсальность математических методов обуславливают огромную роль математики в самых различных областях человеческой деятельности.

Основой любой профессиональной деятельности являются умения:

- строить и использовать математические модели для описания, прогнозирования и исследования различных явлений;

- осуществить системный, качественный и количественный анализ;

- владеть компьютерными методами сбора, хранения и обработки информации;

- владеть методами решения оптимизационных задач.

Широкое применение находят математические методы в естествознании и сугубо гуманитарных науках: психологии, педагогике.

Можно сказать, что в недалеком будущем любая часть человеческой деятельности будет еще более широко использовать в своих исследованиях математические методы.

Литература

Лаптев Б.Л.. Н.И.Лобачевский и его геометрия. М.: Просвещение, 1976.

Рыбников К.А.. История математики. М.: Наука, 1994.

Самарский А.А.. Математическое моделирование. М.: Наука, 1986.

Столл Р.Р.. Множество, Логика, Аксиоматическая теория. М.: Просвещение, 1968.

Стройк Д.Я.. Краткий очерк истории математики. М.: Наука, Физматлит, 1990.

Тихонов А.Н., Костомаров Д.П.. Рассказы о прикладной математике. М.: Вита-Пресс, 1996.

Юшкевич А.П.. Математика в ее истории. М.: Наука, 1996.

Размещено на Allbest.ru


Подобные документы

  • История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.

    реферат [38,2 K], добавлен 09.10.2008

  • Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.

    реферат [25,9 K], добавлен 30.04.2011

  • Греческая математика. Средние века и Возрождение. Начало современной математики. Современная математика. В основе математики лежит не логика, а здравая интуиция. Проблемы оснований математики являются философскими.

    реферат [32,6 K], добавлен 06.09.2006

  • Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.

    презентация [2,2 M], добавлен 20.09.2015

  • Обзор развития европейской математики в XVII-XVIII вв. Неравномерность развития европейской науки. Аналитическая геометрия. Создание математического анализа. Научная школа Лейбница. Общая характеристика науки в XVIII в. Направления развития математики.

    презентация [1,1 M], добавлен 20.09.2015

  • Характеристика экономического и культурного развития России в середине XVIII в. Новые задачи математики, обусловленные развитием техники и естествознанием. Развитие основных понятий математического анализа. Дифференциальное и интегральное исчисление.

    автореферат [27,2 K], добавлен 29.05.2010

  • Происхождение термина "математика". Одно из первых определений предмета математики Декартом. Сущность математики с точки зрения Колмогорова. Пессимистическая оценка возможностей математики Г Вейля. Формулировка Бурбаки о некоторых свойствах математики.

    презентация [124,5 K], добавлен 17.05.2012

  • Предпосылки зарождения математики в Древнем Египте. Задачи на вычисление "аха". Наука древних египтян. Задача из папируса Райнда. Геометрия в Древнем Египте. Высказывания великих ученых о важности математики. Значение египетской математики в наше время.

    реферат [18,3 K], добавлен 24.05.2012

  • Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.

    курсовая работа [347,2 K], добавлен 12.09.2009

  • Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.

    статья [16,2 K], добавлен 05.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.