Правила эквивалентных преобразований структурных схем систем автоматического управления
Рассмотрение структуры типичной системы автоматического управления. Исследование основных правил эквивалентных преобразований. Нахождение необходимой передаточной функции. Применение принципа суперпозиции (наложения). Свертывание структурной схемы.
| Рубрика | Математика |
| Вид | лекция |
| Язык | русский |
| Дата добавления | 23.07.2015 |
| Размер файла | 278,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Правила эквивалентных преобразований структурных схем систем автоматического управления
Выше были рассмотрены математические модели отдельных динамических звеньев. САУ представляет собой систему, состоящую из функциональных элементов, каждый из которых может быть представлен в виде динамического звена. То есть САУ можно представить в виде совокупности динамических звеньев с известными математическими моделями. Рассмотрим структуру типичной САУ -
где - передаточные функции соответственно объекта, датчика и регулятора, - изображения задающего, возмущающего и выходного сигналов.
В процессе анализа и синтеза САУ необходимо получать передаточные функции САУ, которые связывают выходную переменную с заданием и возмущением в САУ, по известным структурной схеме и передаточным функциям динамических звеньев, входящих в состав САУ.
Аналогичная задача возникает в том случае, когда известны частотные характеристики динамических звеньев, а необходимо определить частотные характеристики САУ, характеризующие связи между выходом и входом САУ.
Решением этих задач мы и займемся в дальнейшем.
Эта задача решается путем преобразования (сворачивания) структурной схемы к одному динамическому звену с искомой передаточной функцией на основе использования правил эквивалентных преобразований структурных схем и принципа суперпозиции (наложения).
Правила эквивалентных преобразований позволяют найти необходимую передаточную функцию САУ, свернув структурную схему к одному динамическому звену с искомой передаточной функцией.
Рассмотрим правила эквивалентных преобразований, не изменяющих свойств систем и необходимых для нахождения передаточной функции:
1. Последовательное соединение динамических звеньев.
2. Параллельное соединение динамических звеньев.
3. Замкнутый контур с отрицательной обратной связью.
4. Замкнутый контур с положительной обратной связью.
5. Перенос точки ветвления через динамическое звено.
6. Перенос суммирующего звена через динамическое звено.
7. Перестановка суммирующих звеньев.
8. Перенос точки ветвления с выхода на вход суммирующего звена.
9. Перенос точки ветвления с входа на выход суммирующего звена.
Принцип суперпозиции (наложения)
Применим рассмотренные правила для упрощения структурной схемы
Рис. 1
автоматический управление передаточный суперпозиция
Процесс преобразования, который часто называют свертыванием структурной схемы, выглядит следующим образом.
1. Перенесем суммирующее звено через динамическое звено .
2. Поменяем местами суммирующие звенья и.
3. Преобразуем последовательно включенные динамические звенья и .
4. Преобразуем замкнутый контур с отрицательной обратной связью ().
5. Перенесем суммирующее звено вправо.
6. Преобразуем последовательно включенные звенья.
В соответствии с полученной структурной схемой запишем операторное уравнение -
(1)
Уравнение показывает, что является линейной комбинацией изображений входных сигналов, взятых с коэффициентами и . Выясним смысл этих коэффициентов на примере коэффициента . Для этого положим в (1) , тогда получим -
(2)
Таким образом, из (2) следует, - это передаточная функция динамического звена, к которому свернута структурная схема в предположении, что изображения всех входных сигналов, кроме , равны нулю.
Теперь становится ясным смысл и самого операторного уравнения (1), описывающего систему. Он заключается в том, что реакция линейной системы на совместно действующие входные сигналы может быть определена в виде суммы частичных реакций, каждая из которых вычисляется в предположении, что на систему действует только один входной сигнал, а остальные равны нулю.
По сути - это формулировка фундаментального принципа, который называют принципом наложения или суперпозиции. Этот принцип можно рассматривать как дополнение к правилам эквивалентных преобразований структурных схем и активно использовать на практике.
Практически принцип суперпозиции для нахождения конкретной передаточной функции используют следующим образом. Полагают равными нулю все входные сигналы, кроме необходимого сигнала, а затем выполняют преобразование структурной схемы в одно динамическое звено.
Рассмотрим использование принципа суперпозиции на примере показанной на рис. 1 структурной схемы.
1. Полагаем и изобразим соответствующую этому случаю структурную схему.
Используя эквивалентные преобразования, получим -
.
2. Полагаем и изобразим соответствующую этому случаю структурную схему.
Используя эквивалентные преобразования, получим -
.
3. Имея , в соответствии с принципом суперпозиции получим "свернутую" структурную схему САУ.
Контрольные вопросы и задачи
1. Какие задачи позволяют решать правила эквивалентных преобразований структурных схем?
2. Дайте определение принципа суперпозиции применительно к структурным схемам систем автоматического управления.
3. Как используют принцип суперпозиции на практике?
4. Определите передаточные функции
по следующей структурной схеме
Ответ:
.
5. Определите передаточную функцию, эквивалентную структурной схеме.
Ответ:
.
6. Определите передаточные функции
по следующей структурной схеме
Ответ:
.
7. Определите передаточные функции
по следующей структурной схеме
Ответ:
Размещено на Allbest.ru
Подобные документы
Нахождение АЧХ, ФЧХ, ЛАЧХ для заданных параметров. Построение ЛФЧХ. Определение параметров передаточной функции разомкнутой системы. Исследование на устойчивость по критериям: Гурвица, Михайлова и Найквиста. Определение точности структурной схемы.
курсовая работа [957,8 K], добавлен 11.12.2012Разработка и анализ топологической модели электронной схемы для полного диапазона частот. Определение передаточной схемной функции методом эквивалентных схем в матричной форме, а также методом сигнальных графов, используя сигнальный граф Мэзона.
контрольная работа [469,9 K], добавлен 11.04.2016Использование эквивалентных преобразований. Понятие основных замкнутых классов. Метод минимизирующих карт и метод Петрика. Операция неполного попарного склеивания. Полином Жегалкина и коэффициенты второй степени. Таблицы значений булевых функций.
контрольная работа [90,4 K], добавлен 06.06.2011Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.
курсовая работа [462,5 K], добавлен 20.10.2013Передаточные функции - центральное понятие классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Определение передаточной функции. Статические и астатические системы.
реферат [74,0 K], добавлен 30.11.2008Анализ математических моделей, линейная система автоматического управления и дифференциальные уравнения, векторно-матричные формы и преобразование структурной схемы. Метод последовательного интегрирования, результаты исследований и единичный импульс.
курсовая работа [513,2 K], добавлен 08.10.2011Методика преобразования вращения и ее значение в решении алгебраических систем уравнений. Получение результирующей матрицы. Ортогональные преобразования отражением. Итерационные методы с минимизацией невязки. Решение методом сопряженных направлений.
реферат [116,3 K], добавлен 14.08.2009Определение и порядок расчета для многомерной системы трех имеющихся матриц: передаточной и частотной передаточной функции, годографа, импульсной и переходной характеристики. Порядок составления структурной схемы полученной системы матриц А, В и С.
контрольная работа [206,5 K], добавлен 13.09.2010От анализа Фурье к вейвлет-анализу. Некоторые примеры функций вейвлет-анализа в MATLAB. Построение систем полуортогональных сплайновых вейвлет. Применение вейвлет-преобразований для решения интегральных уравнений. Вейвлеты пакета wavelet toolbox.
дипломная работа [1,5 M], добавлен 12.04.2014Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.
контрольная работа [922,4 K], добавлен 13.12.2012


