Алгебраические действия над комплексными числами
История развития представления человека о числах – одна из ярких сторон становления человеческой культуры. Действия над комплексными числами в алгебраической форме. Комплексное число, сопряженное делителю. Нахождение корней уравнения и дискриминанта.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 15.06.2015 |
Размер файла | 728,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
По заданному уравнению кривой второго порядка определен вид кривой, фокусы и эксцентриситет. Составление уравнения параболы с вершиной в начале координат. Нахождение производных с помощью формул дифференцирования. Действия над комплексными числами.
контрольная работа [113,6 K], добавлен 16.10.2013Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.
контрольная работа [25,7 K], добавлен 29.05.2012Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.
лекция [464,6 K], добавлен 12.06.2011Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка [2,2 M], добавлен 29.06.2010Понятие сходящихся рядов с комплексными числами. Действительные и мнимые части комплексной последовательности. Сумма и разность рядов в комплексными членами. Переход при помощи Эйлера от тригонометрической формы комплексного числа к показательной.
презентация [110,0 K], добавлен 17.09.2013Использование признаков Коши и Лейбница для исследования абсолютной и условной сходимости рядов. Применение теории вероятности для изучения закономерности случайных явлений. Основные действия над комплексными числами. Решение задач симплексным методом.
контрольная работа [94,6 K], добавлен 04.02.2012Гиперкомплексные числа: общее понятие и основные свойства. Нахождение корней трансцендентного уравнения в комплексных числах на примере уравнения классической задачи теории флаттера в математическом виде. Программная реализация решения в среде Maple.
контрольная работа [1,2 M], добавлен 28.06.2013Определение определенного интеграла, правила вычисления площадей поверхностей и объемов тел с помощью двойных и тройных интегралов. Понятие и виды дифференциальных уравнений, способы их решения. Действия над комплексными числами, понятие и свойства рядов.
краткое изложение [145,1 K], добавлен 25.12.2010Систематичний виклад питання рішення задач із комплексними числами. Приклади рішення задач із комплексними числами в алгебраїчній формі, задач з геометричною інтерпретацією комплексних чисел. Дії над комплексними числами в тригонометричній формі.
дипломная работа [1,1 M], добавлен 12.02.2011Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.
презентация [147,4 K], добавлен 17.09.2013Система линейных уравнений. Матричное решение системы уравнений. Геометрический смысл операций с комплексными числами. Элементы аналитической геометрии в пространстве. Классификация функций. Основные элементарные функции. Раскрытие неопределенностей.
шпаргалка [1,1 M], добавлен 12.01.2009Пространство обобщенных функций. Дифференциальные уравнения в обобщенных функциях. Преобразования Лапласа и Фурье. Обобщенные функции, отвечающие квадратичным формам с комплексными коэффициентами. Нахождение решения в математическом пакете Maple.
курсовая работа [516,1 K], добавлен 25.06.2013Задачи на логику: имена и отчества, вычисление веса, ребусы, треугольники, скорость движения, количество детей в семье, арифметические действия над числами, спички, игральные кости, количество дней в месяцах, вычисление возраста родственников, время.
презентация [2,0 M], добавлен 21.04.2012Обозначение десятичной дроби в разное время. Использование десятичной системы мер в Древнем Китае. Запись дроби в одну строку числами в десятичной системе и правила действия с ними. Симон Стевин как фландрский учений, изобретатель десятичных дробей.
презентация [169,0 K], добавлен 22.04.2010Доказательство теоремы о выявлении алгебраической замкнутости поля С (то есть существования корня у любого отличного от константы полинома с комплексными коэффициентами) согласно с принципами лемм Даламбера и о достижении точной нижней грани значений.
реферат [137,7 K], добавлен 01.03.2010Нахождение корней уравнений (Equation Section 1) методом: Ньютона, Риддера, Брента, Лобачевского и Лагерра. Вычисление корней многочленов по схеме Горнера. Функции произвольного вида (при использовании пакета Mathcad). Нахождение корней полиномов.
контрольная работа [62,7 K], добавлен 14.08.2010Примеры алгебраических групп матриц, классические матричные группы: общая, специальная, симплектическая и ортогональная. Компоненты алгебраической группы. Ранг матрицы, возвращение к уравнениям, совместимость. Линейные отображения, действия с матрицами.
курсовая работа [303,7 K], добавлен 22.09.2009История слова "алгоритм", понятие, свойства, виды. Алгоритм Евклида, решето Эратосфена; математические алгоритмы при действии с числами и решении уравнений. Требования к алгоритмам: формализация входных данных, память, дискретность, детерминированность.
реферат [1,1 M], добавлен 14.05.2015Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.
контрольная работа [24,8 K], добавлен 09.09.2009