Регуляризованные алгоритмы оценивания состояния динамических систем
Линейная динамическая система. Оценка вектора состояния с помощью уравнения фильтра Калмана и методом расширения. Модель измерений ковариаций. Алгоритм вычисления вектора состояния при взаимно коррелированных шумах. Регуляризованное решение уравнений.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 13.06.2015 |
Размер файла | 59,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Байесовские алгоритмы оценивания (фильтр Калмана). Постановка задачи оценивания для линейных моделей динамической системы и измерений. Запись модели эволюции и модели измерения в матричном виде. Составление системы уравнений, описывающей эволюцию системы.
курсовая работа [3,0 M], добавлен 14.06.2011Решение системы уравнений по формулам Крамера и методом Гаусса. Нахождение объема пирамиды, площади грани, величины проекции вектора с помощью средств векторной алгебры. Пример определения и решения уравнения стороны, высоты и медианы треугольника.
контрольная работа [989,1 K], добавлен 22.04.2014Методика проверки совместности системы уравнений и ее решение. Вычисление параметров однородной системы линейных алгебраических уравнений. Нахождение по координатам модуля, проекции вектора, скалярного произведения векторов. Составление уравнения прямой.
контрольная работа [104,2 K], добавлен 23.01.2012Определение алгебраического дополнения элемента определителя, матрицы, ее размера и видов. Неоднородная система линейных алгебраических уравнений. Решение системы уравнений методом Крамера. Скалярные и векторные величины, их примеры, разложение вектора.
контрольная работа [239,4 K], добавлен 19.06.2009Особенности построения вектора А, удовлетворяющего заданному множеству условий и ограничений, если даны величины упорядоченных множеств. Характеристика алгоритма перебора вектора А и оценка его временной сложности. Анализ графического изображения вектора.
курсовая работа [164,1 K], добавлен 11.03.2010Расчет произведения заданных матриц. Решение системы линейных алгебраических уравнений по формулам Крамера, матричным методом и методом Гаусса. Координаты вектора в базисе. Определение ранга заданной матрицы. Система с базисом методом Жордана-Гаусса.
контрольная работа [88,2 K], добавлен 19.01.2014Определение длины стороны треугольника, нахождение координаты вектора в заданном трехмерном базисе, решение системы уравнений с помощью обратной матрицы, вычисление предельных значений, исследование функции методами дифференциального исчисления.
контрольная работа [1,1 M], добавлен 04.05.2010Определение динамических свойств объектов с помощью дифференциальных уравнений для сравнительно простых объектов. Выражение входной и выходной величины элемента в долях, введение безразмерных координат. График кривой разгона, коэффициент усиления.
реферат [12,5 K], добавлен 16.05.2010Проверка совместности системы уравнений, ее решение матричным методом. Координаты вектора в четырехмерном пространстве. Решение линейных неравенств, определяющих внутреннюю область треугольника. Определение пределов, производных; исследование функции.
контрольная работа [567,1 K], добавлен 21.05.2013Исследование сущности и сфер применения метода итераций. Нелинейные уравнения. Разработка вычислительный алгоритм метода итераций. Геометрический смысл. Составление программы решения систем нелинейных уравнений методом итераций в среде Turbo Pascal.
реферат [183,7 K], добавлен 11.04.2014Метод Гаусса–Жордана: определение типа системы, запись общего решения и базиса. Выражение свободных переменных с использованием матричного исчисления. Нахождение координат вектора в базисе. Решение системы уравнений по правилу Крамера и обратной матрицей.
контрольная работа [200,4 K], добавлен 17.12.2010Линейные операции над векторами. Уравнение прямой, проходящей через две точки. Варианты решений систем линейных уравнений. Действия с матрицами. Модель транспортной задачи, ее решение распределительным методом. Исследование функций с помощью производных.
контрольная работа [1,0 M], добавлен 09.10.2011Решение системы уравнений методом Гаусса и с помощью встроенной функции; матричным методом и с помощью вычислительного блока Given/Find. Нахождение производных. Исследование функции и построение её графика. Критические точки и интервалы монотонности.
контрольная работа [325,8 K], добавлен 16.12.2013Получение точного решения дифференциального уравнения вручную, операторным методом, приближенное решение с помощью рядов (до 5 элемента ряда) на заданном интервале, графическое решение. Относительная и абсолютная погрешность методов Эйлера и Рунге-Кутты.
курсовая работа [990,8 K], добавлен 17.07.2014Математическая модель задачи. Решение транспортной задачи методом потенциалов. Значение целевой функции. Система, состоящая из 7 уравнений с 8-ю неизвестными. Решение задач графическим методом. Выделение полуплоскости, соответствующей неравенству.
контрольная работа [23,5 K], добавлен 12.06.2011Решение задач систем линейных алгебраических уравнений, матричных уравнений, методы Гаусса и Кремера. Нахождение длины и координат вектора и исчисление его скалярного произведения. Уравнение прямой и определение координат точек неравенства; пределы.
контрольная работа [220,9 K], добавлен 06.01.2011Сущность глобального вектора приоритета альтернатив по данным матрицам. Анализ собственного вектора матрицы, этапы создания диагональной матрицы. Расчет глобального вектора приоритетов альтернатив с условием согласованности матриц парных сравнений.
контрольная работа [241,9 K], добавлен 05.06.2012Правила произведения матрицы и вектора, нахождения обратной матрицы и ее определителя. Элементарные преобразования матрицы: умножение на число, прибавление, перестановка и удаление строк, транспонирование. Решение системы уравнений методом Гаусса.
контрольная работа [462,6 K], добавлен 12.11.2010Линейная дискретная система с постоянными параметрами. Условие устойчивости одномерного стационарного линейного фильтра. Устойчивость нерекурсивных дискретных систем. Проверка на устойчивость рекурсивного фильтра второго порядка. Уравнения сумматоров.
презентация [89,3 K], добавлен 19.08.2013Нелинейные уравнения, определение корней. Первая теорема Бальцано-Коши. Метод бисекций (деления пополам) и его алгоритм. Использование линейной интерполяции граничных значений заданной функции в методе хорд. Тестовое уравнение, компьютерный эксперимент.
реферат [104,3 K], добавлен 10.09.2009