Правильные многогранники в природе

Изучение понятия правильного многогранника — выпуклого многогранника, состоящего из одинаковых правильных многоугольников и обладающего пространственной симметрией. Исследование нахождения правильных многогранников в природе: икосаэдра, тетраэдра.

Рубрика Математика
Вид творческая работа
Язык русский
Дата добавления 12.05.2015
Размер файла 252,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.

    презентация [1,2 M], добавлен 13.11.2015

  • Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.

    презентация [3,5 M], добавлен 19.02.2017

  • Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.

    курсовая работа [1,7 M], добавлен 21.08.2013

  • Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.

    методичка [638,2 K], добавлен 30.04.2012

  • Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

    презентация [6,5 M], добавлен 27.10.2013

  • Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.

    курсовая работа [4,6 M], добавлен 02.04.2012

  • Свойства куба, тетраэдра, октаэдра. Прямые и наклонные призмы. Учение о многоугольниках Пифагора. Деление циферблата часов. Создание колеса со спицами и астрономических сооружений. Виды и свойства пирамид. Теории построения правильных многоугольников.

    презентация [1,4 M], добавлен 26.04.2015

  • Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.

    курсовая работа [2,8 M], добавлен 18.01.2011

  • Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.

    презентация [4,9 M], добавлен 27.10.2013

  • Разнообразие мира кристаллов - мира природных многогранников. Правильные многогранники (поваренная соль и сернистый колчедан) и просто многогранники (кварц, гранат, алмаз, исландский шпат). Вид простейшего Circogonia icosahedra - форма икосаэдр.

    презентация [2,3 M], добавлен 21.03.2009

  • Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.

    реферат [14,0 K], добавлен 25.09.2009

  • Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.

    реферат [1,1 M], добавлен 25.09.2009

  • Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.

    презентация [531,0 K], добавлен 03.11.2011

  • Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.

    реферат [73,5 K], добавлен 08.05.2011

  • Бинарная алгебраическая операция. Разновидности групп, использование рациональных чисел вместо вещественных. Действие группы на множестве. Группа симметрий тетраэдра. Формулировка и доказательство леммы Бернсайда о количестве орбит. Задачи о раскрасках.

    курсовая работа [822,9 K], добавлен 25.02.2015

  • Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.

    презентация [4,2 M], добавлен 20.04.2014

  • Загальні типи правильних опуклих многогранників. Властивості тетраедрів, кубів, октаедрів, додекаедрів та ікосаедрів. Кількість сторін, ребер та вершин многогранника. Формули для визначення площі поверхні многогранників. Винаходження декартових координат.

    презентация [317,7 K], добавлен 12.12.2011

  • Пространственная симметрия правильного многогранника. Тетраэдр, октаэдр, икосаэдр, куб, додекаэдр. Геометрические свойства: площадь, объем. Роль Теэтета Афинского в развитии геометрии. Структура Солнечной системы и отношения расстояний между планетами.

    презентация [831,5 K], добавлен 04.05.2013

  • Исторические сведения, понятия о многогранниках. Изгибаемые многогранники Коннелли. Гипотеза кузнечных мехов. Построение модели Октаэдр Брикара, Флексор Штеффена. Симметрия, объем, изгибаемость и основные свойства многогранников. Теорема Сабитова.

    курсовая работа [488,9 K], добавлен 03.10.2010

  • Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.

    курсовая работа [644,0 K], добавлен 19.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.