Основные свойства функции
Характеристика основных элементарных функций. Изучение арифметических свойств пределов. Суть формулы непрерывных процентов. Анализ точек разрыва и их классификации. Особенность неопределенного интеграла и его свойств. Оценка метода наименьших квадратов.
Рубрика | Математика |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 22.04.2015 |
Размер файла | 205,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Схема решения в случае б) аналогична,только в №2 F(/2,k1,k2), в №3 k1=n-1,k2=m-1 или k2=n-1,k1=m-1 , так как k1 - число степеней свободы большей дисперсии,k2 - число степеней свободы меньшей дисперсии.
Проверка статистической гипотезы о виде закона распределения (Критерий Пирсона).
Х - случайная величина. Требуется но уровню значимости проверить гипотезу о нормальном распределении Х.
1. Весь интервал выборочных значений разделить на S частных интервалов одинаковой длины. Находим середины частичных интервалов, переходим к новому выборочному распрелению. ni -число фактических зачений попавших в i интервал.
2. Для получения последовательности равностоящих вариантов находим
X* ср =(Si=1nixi)/n, G*=ni*(xi-x*)2/n.
попадания х в i интервал. Если х - нормально распределённая случайная величина, то Z распределена по нормальному закону с нулевым математическим ожиданием и единичной дисперсией и
pi=Ф(Zi+1) - Ф(Zi), а Zi=(xi-x*)/G*
3. Нормируем случайную величину х, рассматриваетм величину
Z=(x-x*)/G*
4. вычисляем теоретические (вычисленные в предположении нормального распределения) частоты ni =n*pi ,pi - веростность
5. В качестве проверки нулевой гипотезы применим критерий Пирсона.
2=s(ni-ni)2
i=1 ni
6. По таблиые критических точек распределения 2 по заданному уровню значимости и числу степеней свободы k=s-3 находим критическую точку 2кр.(,к).
7. Сравнивая 2кр. и 2набл., делаем вывод: - если 2набл.< 2кр. , то гипотезу о нормальном распределении Х принимаем (с уровнем значимости ) если 2набл.> 2кр. , то гипотезу о нормальном распределении Х отвергаем. (Аналогично проверяется,что гипотеза принадлежит любому другому распределению, только в № 4 рi будет считаться в соответствии с этим распределением.)
Размещено на Allbest.ru
Подобные документы
Вычисление пределов гиперболических функций. Дифференцирование сложной функции. Разложение гиперболических функций по формуле Тейлора. Свойства неопределенного интеграла, интегрирование функций. Гиперболические функции комплексного переменного.
дипломная работа [2,8 M], добавлен 11.01.2011Определение неопределенного интеграла, первообразной от непрерывной функции, дифференциала от неопределенного интеграла. Вывод формулы замены переменного в неопределенный интеграл и интегрирования по частям. Определение дробнорациональной функции.
шпаргалка [42,3 K], добавлен 21.08.2009Определение коэффициентов элементарных функций: линейной, показательной, степенной, гиперболической, дробно-линейной, дробно-рациональной. Использование метода наименьших квадратов. Приближённые математические модели в виде приближённых функций.
лабораторная работа [253,6 K], добавлен 05.01.2015Использование формулы Тейлора для разложения основных элементарных функций в степенной ряд. Сущность форм Лагранжа и Пеано, примеры вычисление пределов функций. Особенности использования принципа разложения в ряд на ЭВМ в режиме реального времени.
курсовая работа [107,1 K], добавлен 29.04.2011Векторы на плоскости и в пространстве. Обыкновенное дифференциальное уравнение. Необходимые формулы для решения задач о касательной. Метод наименьших квадратов. Необходимые определения и формулы для вычисления интегралов. Производные элементарных функций.
курс лекций [119,3 K], добавлен 21.04.2009Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.
курсовая работа [1,0 M], добавлен 29.01.2010Дифференциальное исчисление функции одной переменной: определение предела, асимптот функций и глобальных экстремумов функций. Нахождение промежутков выпуклости и точек перегиба функции. Примеры вычисления неопределенного интеграла, площади плоской фигуры.
задача [484,3 K], добавлен 02.10.2009Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.
курсовая работа [1,9 M], добавлен 12.02.2013Способы вычисления интегралов. Формулы и проверка неопределенного интеграла. Площадь криволинейной трапеции. Неопределенный, определенный и сложный интеграл. Основные применения интегралов. Геометрический смысл определенного и неопределенного интегралов.
презентация [1,2 M], добавлен 15.01.2014