Теория вероятности и математическая статистика
Методика нахождения константы из свойства плотности распределения. Методы определения плотности вероятностей нормально распределенной случайной величины. Порядок вычисления математического ожидания, среднего квадратического отклонения и дисперсии.
Рубрика | Математика |
Предмет | Теория вероятности и математическая статистика |
Вид | контрольная работа |
Язык | русский |
Прислал(а) | Incognito |
Дата добавления | 22.04.2015 |
Размер файла | 71,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вычисление математического ожидания, дисперсии, функции распределения и среднеквадратического отклонения случайной величины. Закон распределения случайной величины. Классическое определение вероятности события. Нахождение плотности распределения.
контрольная работа [38,5 K], добавлен 25.03.2015Определение вероятности того, что из урны взят белый шар. Нахождение математического ожидания, среднего квадратического отклонения и дисперсии случайной величины Х, построение гистограммы распределения. Определение параметров распределения Релея.
контрольная работа [91,7 K], добавлен 15.11.2011Рассмотрение способов нахождения вероятностей происхождения событий при заданных условиях, плотности распределения, математического ожидания, дисперсии, среднеквадратического отклонения и построение доверительного интервала для истинной вероятности.
контрольная работа [227,6 K], добавлен 28.04.2010Сущность закона распределения и его практическое применение для решения статистических задач. Определение дисперсии случайной величины, математического ожидания и среднеквадратического отклонения. Особенности однофакторного дисперсионного анализа.
контрольная работа [328,2 K], добавлен 07.12.2013Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.
контрольная работа [263,8 K], добавлен 13.01.2014Определение вероятности случайного события; вероятности выиграшных лотерейных билетов; пересечения двух независимых событий; непоражения цели при одном выстреле. Расчет математического ожидания, дисперсии, функции распределения случайной величины.
контрольная работа [480,0 K], добавлен 29.06.2010Определение вероятности для двух несовместных и достоверного событий. Закон распределения случайной величины; построение графика функции распределения. Нахождение математического ожидания, дисперсии, среднего квадратичного отклонения случайной величины.
контрольная работа [97,1 K], добавлен 26.02.2012Особенности выполнения теоремы Бернулли на примере электрической схемы. Моделирование случайной величины по закону распределения Пуассона, заполнение массива. Теория вероятности, понятие ожидания, дисперсии случайной величины и закон распределения.
курсовая работа [29,7 K], добавлен 31.05.2010Определение вероятностей различных событий по формуле Бернулли. Составление закона распределения дискретной случайной величины, вычисление математического ожидания, дисперсии и среднеквадратического отклонения случайной величины, плотностей вероятности.
контрольная работа [344,8 K], добавлен 31.10.2013Дискретные случайные величины и их распределения. Формула полной вероятности и формула Байеса. Общие свойства математического ожидания. Дисперсия случайной величины. Функция распределения случайной величины. Классическое определение вероятностей.
контрольная работа [33,8 K], добавлен 13.12.2010