Применение математических методов для исследования пассивного четырехполюсника
Описание электрической цепи пассивного четырехполюсника по каналу "вход-выход". Запись уравнения электрической цепи в терминах пространства состояния и получение передаточной функции. Преобразование дифференциального уравнения цепи в дискретную форму.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 01.04.2015 |
Размер файла | 983,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика.
курсовая работа [721,0 K], добавлен 27.05.2008Анализ цепи с применением методов переменных состояния, операторного и частотного при апериодическом и периодическом воздействии. Определение амплитудного и фазового спектров входного сигнала. Получение тока на выходе цепи в виде отрезка ряда Фурье.
курсовая работа [1,9 M], добавлен 11.01.2012Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.
контрольная работа [564,9 K], добавлен 30.03.2015Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.
реферат [286,2 K], добавлен 06.08.2013Проверка непрерывности заданных функций. Интегрирование заданного уравнения и выполние преобразования с ним. Интегрирование однородного дифференциального уравнения. Решение линейного дифференциального уравнения. Общее решение неоднородного уравнения.
контрольная работа [65,3 K], добавлен 15.12.2010Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа [337,3 K], добавлен 19.09.2011Порядок решения дифференциального уравнения 1-го порядка. Поиск частного решения дифференциального уравнения, удовлетворяющего указанным начальным условиям. Особенности применения метода Эйлера. Составление характеристического уравнения матрицы системы.
контрольная работа [332,6 K], добавлен 14.12.2012Общий интеграл уравнения, применение метода Лагранжа для решения неоднородного линейного уравнения с неизвестной функцией. Решение дифференциального уравнения в параметрической форме. Условие Эйлера, уравнение первого порядка в полных дифференциалах.
контрольная работа [94,3 K], добавлен 02.11.2011Понятие дифференциального уравнения. Нахождение первообразной для заданной функции. Нахождение решения дифференциального уравнения. Выделение определенной интегральной кривой. Понятие произвольных независимых постоянных. Уравнение в частных производных.
презентация [42,8 K], добавлен 17.09.2013Дифференциальные уравнения Риккати. Общее решение линейного уравнения. Нахождение всех возможных решений дифференциального уравнения Бернулли. Решение уравнений с разделяющимися переменными. Общее и особое решения дифференциального уравнения Клеро.
курсовая работа [347,1 K], добавлен 26.01.2015Цепи Маркова как обобщение схемы Бернулли, описание последовательности случайных событий с конечным или счётным бесконечным числом исходов; свойство цепей, их актуальность в информатике; применение: определение авторства текста, использование PageRank.
дипломная работа [348,5 K], добавлен 19.05.2011Общий вид линейного однородного уравнения. Нахождение производных, вещественные и равные корни характеристического уравнения. Пример решения дифференциального уравнения с постоянными коэффициентами. Общее и частное решение неоднородного уравнения.
презентация [206,3 K], добавлен 17.09.2013Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.
курсовая работа [126,8 K], добавлен 20.04.2011Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.
курсовая работа [330,2 K], добавлен 25.11.2011Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.
лекция [520,6 K], добавлен 18.08.2012Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.
курсовая работа [489,1 K], добавлен 17.11.2016Характеристика надежности объекта: исправность, работоспособность, предельное состояние, повреждение, отказ и критерий отказа. Выбор моделей и методов анализа надежности. Вероятность разрыва электрической цепи, отказа тиристора из партии изделий.
курсовая работа [37,2 K], добавлен 02.08.2009Структурное преобразование схемы объекта и получение в дифференциальной форме по каналам внешних воздействий. Формы представления вход-выходных математических моделей динамических, звеньев и систем, методов их построения, преобразования и использования.
курсовая работа [1,3 M], добавлен 09.11.2013Исследование зависимости погрешности решения от погрешностей правой части системы. Определение корня уравнения с заданной точностью. Вычисление точностных оценок методов по координатам. Сплайн интерполяция и решение дифференциального уравнения.
контрольная работа [323,4 K], добавлен 26.04.2011Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа [107,2 K], добавлен 25.11.2013