Інтерполяційні формули Ньютона
Поняття інтерполяції як різновиду апроксимації, при якій крива побудованої функції проходить точно через наявні точки даних. Характеристика теореми Вейерштрасса. Розгляд першої та другої інтерполяційної формули Ньютона. Оцінка похибок центральних формул.
Рубрика | Математика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 06.04.2015 |
Размер файла | 979,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Сутність інтерполяційних поліномів. Оцінка похибок інтерполяційних формул, їх застосування. Програма обчислення наближених значень функції у випадку, коли функція задана таблично, використовуючи інтерполяційні формули для рівновіддалених вузлів.
курсовая работа [956,4 K], добавлен 29.04.2011Задачі обчислювальної математики. Алгоритми розв'язування багатьох стандартних задач обчислювальної математики. Обчислення інтерполяційного полінома Лагранжа для заданої функції. Виконання обчислення першої похідної на основі другої формули Ньютона.
контрольная работа [67,1 K], добавлен 27.03.2012Кінцеві різниці різних порядків. Залежність між кінцевими різницями і функціями. Дискретний і неперервний аналіз. Поняття про розділені різниці. Інтерполяційна формула Ньютона. Порівняння формул Лагранжа і Ньютона. Інтерполяція для рівновіддалених вузлів.
контрольная работа [75,6 K], добавлен 06.02.2014Історія створення і різні формулювання теореми Піфагора як актуальної математичної задачі, спроби докази теореми. Визначення теореми Фалеса про пропорційні відрізки, її рішення. Місце теореми Вієта та формули Герона в сучасному шкільному курсі геометрії.
курсовая работа [1,5 M], добавлен 25.05.2019Суть інтерполяції - у відшуканні значень функції в деякій проміжній точці. Лінійна інтерполяція, в основі якої лежить наближення кривої на ділянці між заданими точками прямою, що проходить через ті ж точки. Інтерполяція за Лагранжем. Практична формула.
презентация [92,6 K], добавлен 06.02.2014Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Поняття полярної системи координат, особливості завдання координат точки у ній. Формули переходу від декартової до полярної системи координат. Запис рівняння заданої кривої в декартовій системі координат з використанням вказаної формули переходу.
контрольная работа [2,4 M], добавлен 01.04.2012Етапи побудови емпіричних формул: встановлення загального виду формули; визначення найкращих її параметрів. Суть методу найменших квадратів К. Гауса і А. Лежандра. Побудова лінійної емпіричної формули. Побудова квадратичної емпіричної залежності.
контрольная работа [128,1 K], добавлен 22.01.2011Частинні похідні та диференційованість функції: поняття та теореми. Повний диференціал функції та його застосування до обчислення функцій і похибок. Диференціали вищих порядків. Інваріантність форми повного диференціала. Диференціювання неявної функції.
реферат [278,8 K], добавлен 02.05.2011Розгляд методів твірних функцій. Біном Ньютона як найбільш відомий приклад твірної функції. Розгляд задачі про щасливі білети. Аналіз властивостей твірних функцій. Характеристика найважливіших властивостей твірних функцій, особливості застосування.
курсовая работа [428,9 K], добавлен 12.09.2012Поняття диференційованості функції в даній точці, основні формули. Диференціал функції однієї змінної, його застосування. Основні означення, які відносяться до функції кількох змінних. Похідна алгебраїчної суми скінченного числа диференційованих функцій.
реферат [101,8 K], добавлен 02.11.2015Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.
реферат [140,2 K], добавлен 27.03.2012Обчислення довжини дуги для просторової кривої, що задана параметрично. Варіант розрахунку у випадку задання кривої в полярній системі координат. Формули для обчислення площі поверхні обертання. Вираз площі циліндричної поверхні через елементарні функції.
научная работа [103,7 K], добавлен 12.05.2010Розгляд виробничої функції, яка відображає зв'язок між зміною обсягів двох задіяних у процесі виробництва типів ресурсів та результатами цієї взаємодії. Дослідження виробничої функції для обробної промисловості США. Похідні формули праці та капіталу.
презентация [4,1 M], добавлен 12.01.2022Побудова сіткової функції при чисельному інтегруванні по заданій підінтегральній функції. Визначення формул прямокутників та трапецій; оцінка їх похибок. Використання методики інтегрування за методом трапецій для обчислення визначеного інтеграла.
презентация [617,4 K], добавлен 06.02.2014Теоретико-множинне визначення символу О як невизначеної функції. Допустима погрішність апроксимації. Асимптотичне рішення інтегралів, трансцендентних рівнянь (дійсного і змінного). Використання формул підсумовування Ейлера при знаходженні суми ряду.
курсовая работа [107,6 K], добавлен 20.01.2011Поняття інтеграла Фур’є для функції дійсної змінної. Різні форми запису формули. Головне значення інтеграла та комплексна форма запису. Лінійне перетворення оберненого перетворення Фур’є. Алгоритм доведення ознаки Діні про початкову збіжність функції.
курсовая работа [662,1 K], добавлен 27.04.2014Модифицированный метод Ньютона. Общие замечания о сходимости процесса. Метод простой итерации. Приближенное решение систем нелинейных уравнений различными методами. Быстрота сходимости процесса. Существование корней системы и сходимость процесса Ньютона.
дипломная работа [1,8 M], добавлен 14.09.2015Характеристика важнейших типов сходимости итерационных последовательностей. Специфические особенности применения метода Ньютона для определения кратных корней. Алгоритм нахождения корней трансцендентного уравнения с использованием метода секущих.
дипломная работа [964,9 K], добавлен 09.06.2019Иоганн Карл Фридрих Гаусс - величайший математик всех времен. Интерполяционные формулы Гаусса, дающие приближенное выражение функции y=f(x) при помощи интерполяции. Области применение формул Гаусса. Основные недостатки интерполяционных формул Ньютона.
контрольная работа [207,3 K], добавлен 06.12.2014