Определитель произведения прямоугольных матриц

Сущность и математическое обоснование, обозначения и классификация матриц, их разновидности и правила умножения. Характеристика и главные признаки обратимых матриц. Описание простейших свойств определителей. Содержание и использование теоремы Лагранжа.

Рубрика Математика
Вид курсовая работа
Язык русский
Дата добавления 11.01.2015
Размер файла 524,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Цель данной работы: теоретическое обоснование и необходимость практического применения теоремы Коши-Бине:

Пусть , - и -матрицы соответственно, и

Тогда

Другими словами, при определитель матрицы является суммой произведений всевозможных миноров порядка в на соответствующие миноры матрицы того же самого порядка

Работа состоит из четырех глав, содержит заключение, список литературы и приложение программы для теоремы Коши-Бине. В главе 1 рассматриваются элементы линейной алгебры - матрицы, операции над матрицами и свойства сложения матриц, и умножения на скаляр. Глава 2 посвящается умножению матриц и его свойств, а также транспонирование произведения двух матриц. В главе 3 рассматриваются обратимые и элементарные матрицы. В главе 4 вводиться понятие определителя квадратной матрицы, рассматриваются свойства и теоремы об определителях, а также приводится доказательство теоремы Коши-Бине, что является целью моей работы. В дополнение прилагается программа показывающая механизм нахождения определителя произведения двух матриц.

1. Определение, обозначения и типы матриц

Мы определяем матрицу как прямоугольную таблицу чисел:

Где элементы матрицы aij (1?i?m, 1?j?n) - числа из поля .Для наших целей поле будет либо множеством всех вещественных чисел, либо множеством всех комплексных. Размер матрицы , где m-число строк, n-число столбцов. Если m=n, то говорят, что матрица квадратная, порядка n. В общем случаем матрица называется прямоугольной.

Каждой матрице с элементами aij соответствует nЧm матрица с элементами aji. Она называется транспонированной к и обозначается через. Видно, что =. Строки матрицы становятся столбцами в и столбцы матрицы становятся строками в.

Матрица называется нулевой если все элементы равны 0:

Матрица называется треугольной если все ее элементы, расположенные ниже главной диагонали равны 0

Треугольная матрица называется диагональной, если все элементы расположенные вне главной диагонали равны 0

Диагональной матрица называется единичной, если все элементы расположенные на главной диагонали равны 1

Матрица, составленная из элементов, находящихся на пересечении нескольких выбранных строк матрицы и нескольких выбранных столбцов, называется субматрицей для матрицы . Если -номера выбранных строк и -номера выбранных столбцов, то субматрица это

В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.

Операции над матрицами

Определим следующие операции:

Сумма двух матриц , и с элементами и есть матрица С с элементами , запишем это как

Произведение матрицы на число поля есть матрица С с элементами , запишем как .

Произведение матрицы на матрицу есть матрица С с элементами , запишем

поле скаляров, рассмотрим , где элемент матрицы , расположенный в -строке , -столбце . Размерность матрицы .Если , то -квадратная матрица порядка . Множество -это множество всех матриц над полем .

Опр. Две матрицы равны, если они имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы. Другими словами: равна матрице , т.е.

Опр. Пусть -это матрицы одинаковой размерности . Суммой матриц и называется матрица у которой в строке, столбце расположен элемент , т.е. . Другими словами: Чтобы сложить две матрицы нужно сложить соответствующие элементы:

Пример:

Опр. Пусть , , . Произведение скаляра на матрицу называется у которой в строке, столбце расположен элемент . Другими словами: Чтобы скаляр умножить на матрицу нужно все элементы матрицы умножить на скаляр .

Определение. Противоположной к матрице называется матрица

Свойства сложения и умножения матриц на скаляры:

-абелева группа

1) Сложение матриц ассоциативно и коммутативно.

2)

3)

а)

б)

4)

1.1 Умножение матриц

,

,

Опр. Произведением матрицы на матрицу называется матрица . , где

, где

Говорят, что есть скалярное произведение -строки матрицы на -столбец матрицы .

, где

Пример:

Свойства умножения матриц

Умножение матриц ассоциативно:

1) , если определены произведения матриц и

Доказательство:

Пусть , так как определено , то и определено , то

Определим матрицы:

а)

б)

(1)

матрицы, тогда имеют одинаковую размерность

2) Покажем, что на одинаковых местах в матрицах расположены одинаковые элементы

из равенства (1) (2), (3). Подставляя (3) в (2) получим:

, тогда (4), (5). Подставляя (5) в (4) получим:

Вывод: Матрицы имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы.

Умножение матриц дистрибутивно :

Доказательство:

так как определено , то и определено , то

размерности

размерности

Матрицы имеют одинаковую размерность, покажем расположение одинаковых элементов:

,

,

Вывод: На одинаковых местах расположены одинаковые элементы.

3. , . Если определены матрицы, то доказательство проводим аналогично свойству 2.

4. , : , если определена матрица

Доказательство:

. Пусть ,

, ,

5. Умножение матриц в общем случае не коммутативно. Рассмотрим это на примере:

, тогда

Техника матричного умножения

поле скаляров, ,

Свойства:

Произведение можно рассматривать, как результат умножения столбцов матрицы на слева и как результат умножения строк матрицы на справа.

Пусть матрица , -линейная комбинация столбцов матрицы коэффициенты которой служат элементы матрицы

Пример

Пусть -матрица , тогда -линейная комбинация строк матрицы коэффициенты которой служат элементы матрицы

Пример:

Столбцы матрицы -линейная комбинация столбцов матрицы . Строки -линейная комбинация строк матрицы .

Транспонирование произведения матриц

поле скаляров, , , ,

Теорема

если , то . Обозначим: ,

Доказательство:

1) Пусть ,

- размерности , - размерности , тогда и имеют одинаковую размерность

2) , -элемента расположенный в -строке, -столбце матрицы т.е.

, -произведение -строки транспонированной на столбец ,

2. Обратимые матрицы

поле скаляров, множество матриц порядка

Определение. Квадратная матрица порядка называется единичной матрицей

,

Пусть ,

Теорема 1

, то для выполняется

Доказательство:

Из этого следует . Матрица является единичной матрицей. Она выполняет роль единицы при умножении матриц.

Определение. Квадратная матрица называется обратимой если существует так, что выполняются условия

Матрица называется обратной к и обозначается , тогда если -это обратная к , то обратная к -это взаимообратные матрицы т.е.

Теорема 2

Если -обратима, то существует только одна матрица обратная к

Доказательство:

Пусть дана матрица , которая обратима и пусть существуют матрицы обратные к т.е. . Имеем

Обозначение: Множество всех обратимых матриц порядка над полем обозначается

Теорема 3

Справедливы утверждения:

1) алгебра

2) группа

Доказательство:

1) -это бинарная операция

а) Пусть , так как -обратимые матрицы, проверим, что -это бинарная операция:

обратные к

Аналогично: , обратимая матрица т.е. -это бинарная операция

б) , матрица обратима, поэтому -это унарная операция

в) обратима т.е.

2) Докажем второе утверждение, что группа. Для этого проверим аксиомы групп:

1)

2)

3)

группа

Следствие:

Произведение обратимых матриц есть обратимая матрица

Если обратима, то обратима

2.1.Элементарные матрицы

Пусть поле скаляров

Определение. Элементарной матрицей называется матрица, полученная из единичной матрицы в результате одного из следующих элементарных преобразований:

Умножение строки (столбца) на скаляр

Прибавление к какой либо строке (столбцу) другой строки (столбца), умноженный на скаляр

Обозначение: -элементарная матрица, полученная умножением на -строки (столбца) матрицы

-строка

-элементарная матрица, полученная прибавлением к -строке (столбцу) матрицы -строки (столбца), умноженной на

-строка

Пример: Элементарные матрицы порядка 2

, , , ,

Обозначение: -элементарная матрица, полученная из единичной матрицы с помощью элементарного преобразования

3. Определители

Определитель матрицы обозначается . Другими словами определитель матрицы -это сумма произведений из множества умноженная на знак, соответствующей подстановки.

Пример

Определитель второго порядка равен произведению элементов главной диагонали вычесть произведение элементов на побочной.

Для

Получили правило треугольника:

Простейшие свойства определителей

Определитель матрицы с нулевой строкой (столбцом) равен нулю

Определитель треугольной матрицы равен произведению элементов, расположенных на главной диагонали

-это треугольная матрица если элементы под главной диагональю равны нулю.

Определитель диагональной матрицы равен произведению элементов, расположенных на главной диагонали. Матрица диагональная если все элементы, расположенные вне главной диагонали равны нулю.

Основные свойства определителей

поле скаляров,

1)

Доказательство:

,

обозначим . Если «пробегает» все множество , то тоже «пробегает» все т.е.

При перестановке двух столбцов (строк) матрицы ее определитель изменит знак.

Доказательство:

I) Перестановка столбцов:

Пусть - это матрица, полученная из перестановкой двух столбцов с номерами , где . Рассмотрим транспозицию:

, транспозиция является нечетной подстановкой , ,

В доказательстве будем использовать равенство:

Если пробегает все множество значений , то тоже пробегает все значения и

II) Перестановка строк

Пусть получена из перестановкой двух строк, тогда получена из перестановкой двух столбцов, тогда

III) Определитель матрицы, имеющий две одинаковые строки (столбца) равных нулю

Доказательство:

Проведем для такого поля , где

Замечание

Доказательство для случая найди в учебнике Куликовой Алгебра и теория чисел

Пусть в есть две одинаковые строки с номерами и , где , поменяем местами строки и , получим матрицу

(по св. 2)

и , тогда

Если у два одинаковых столбца, то у транспонированной матрицы две одинаковые строки

IV) Если все элементы какой-либо строки (столбца) матрицы умножить на , то определитель умножиться на

Доказательство:

Пусть получена из умножением на строки

так как , то

Аналогичное доказательство для столбцов

V) Определитель матрицы у которой две строки (столбца) пропорциональны равны нулю

Доказательство:

Пусть в матрице , строки пропорциональны т.е. -строка равна произведению на -строку. Пусть

Для столбцов:

Пусть получена из , . Столбцы и пропорциональны и

VI) Если каждый элемент -строки(столбца) квадратной матрицы есть сумма двух элементов, то определитель равен сумме двух определителей. В матрице первого определителя в - строке (столбце), записаны первые слагаемые, а в матрице второго определителя вторые слагаемые. Остальные элементы матриц этих определителей такие же как у матрицы

Доказательство:

VII) Ели к какой либо строке (столбцу) матрице определителя прибавить другую строку (столбец), умноженный на , то определитель не изменится.

Доказательство:

Для столбцов аналогично.

VIII) Если какая либо строка (столбец) матрицы является линейной комбинацией других строк (столбцов) , то определитель

Доказательство:

Если какая то строка линейная комбинация других строк, то к ней можно прибавить другие строки, умноженные на скаляры так, чтобы получилась нулевая строка. Определитель такой матрицы равен нулю.

Пример:

(сначала умножаем первую строку на -2 и складываем со второй, затем на -3 и складываем с третей). Такое правило приведения к треугольному виду используется для определителей - порядка:

так как определитель треугольной матрицы равен произведению элементов расположенных на главной диагонали.

Если квадратная матрица является произведением некоторых матриц (которые могут быть прямоугольными), то часто бывает важно иметь возможность выразить определитель произведения в терминах свойств множителей. Следующая теорема - мощный показатель этого.

Миноры и алгебраические дополнения.

Теоремы об определителях.

поле скаляров,

Опр. Минор элемента определителя порядка - определитель порядка , полученный из вычеркиванием -строки и -столбца.

Главные миноры определителя

Для главные миноры есть определители

, , …, ,

Пример:

Рассмотрим матрицу и вычислим ее миноры

: , ,

Определение. Алгебраическим дополнением элемента обозначается называется число

Пример: Вычислим , ,

Лемма 1

и.

Доказательство:

(в сумме только те слагаемые ненулевые, где )

Тогда подстановка имеет вид: , где . К подстановке поставим в соответствие т.е.

, такое соответствие называется взаимооднозначным отображением множества подстановок на множество подстановок , . Очевидно, что и имеют одинаковые инверсии, значит имеют одинаковую четность и знаки

Лемма 2

Если равны нулю все элементы какой-либо строки (столбца) матрицы за исключением быть может одного элемента, то определитель матрицы равен произведению этого элемента на его алгебраическое дополнение

Доказательство:

Пусть все элементы -строки матрицы за исключением элемента

перестановкой строк и столбцов переместили элемент в правый нижний угол , значит строк и -столбцов. Знак будет меняться раз, после этого получиться матрица у которой все элементы последней строки кроме может быть равны нулю. По Лемме 1 , т.к.

Теорема Лагранжа

равна сумме произведений элементов какого-либо столбца (строки) матрицы на их алгебраическое дополнение. Другими словами: разложение по -столбцу матрицы имеет вид: , а разложение по -строке матрицы :

Доказательство:

рассмотрим -столбец матрицы и запишем в виде: , по 6 свойству определителей:

определитель матрица лагранж математический

,

аналогично доказывается формула разложение по -строке матрицы .

Теорема 2

Справедливы равенства:

Рассмотрим матрицу , которая получена из матрицы следующим образом: все столбцы матрицы , кроме -го такие же как и у матрицы . -тый столбец матрицы совпадает с -столбцом , тогда у два одинаковых столбца, поэтому определитель матрицы равен нулю, разложим определитель матрицы по -тому столбцу.

, , тогда . Формула (2) показывается аналогично.

Следствие:

Определитель произведение матриц

поле скаляров, ,

Лемма 1

Пусть элементарная матрица порядка , тогда справедливо равенство:

1) ., т.е. получена из матрицы , умножением -строки на скаляр . Определитель матрицы .

Матрица получена из умножением -строки на скаляр , поэтому определитель

2)

Матрица, полученная из прибавлением к -строке

Лемма 2

-элементарные матрицы

1) , доказательство следует из Леммы 1

2) , доказательство из утверждения (1) при условии

Теорема 1

Определитель произведения двух матриц равен произведению их определителей т.е.

Доказательство:

Пусть строки матрицы линейно независимы, тогда существует цепочка элементарных преобразований

,

тогда по Лемме 2 следует, что . Из того, что () имеем: , тогда

2) Строки линейно зависимы, тогда существует цепочка элементарных преобразований, которая переводит в ступенчатую матрицу , у которой есть нулевая строка т.е. , . Тогда

Из того, что , в произведении , тоже есть нулевая строка, потому

Необходимые и достаточные условия равенства определителя нулю

поле скаляров, , - матрица над полем

Теорема 1

строки (столбцы) матрицы линейно зависимы

Достаточность:

Если строки (столбцы) матрицы линейно зависимы, то какая-то строка является линейной комбинацией других строк (по 8 свойсву определителей)

Необходимость:

Пусть . Докажем, что строки линейно зависимы. Предположим, что строки линейно независимы, тогда существует цепочка элементарных преобразований переводящее . Из доказанного в пункте II следует, что . Получили противоречье . Докажем, что если -строка матрицы линейно зависима,, но (числа векторов столбца) линейно зависима.

Теорема 2

следующие условия равносильны:

1)

2) -линейно зависимы

3) -обратима

4) представима в виде произведения элементарных матриц

Доказательство:

доказано в Теореме 1

Разбиение матриц

Если матрицу , матрицу , матрицу и матрицу записать в виде

(1)

То они, образуют некоторую матрицу . В таком случае могут быть названы блоками матрицы . И обозначены соответственно. Представление (1) называется разбиением матрицы .

Если матричное произведение существует и , разбиты на блоки , , а разбиение по столбцам матрицы соответствует разбиению по строкам матрицы , то можно ожидать, что имеет блоки , задаваемые формулой

Таким образом, мы предполагаем, что произведение матриц в терминах блоков, полученных при соответствующих разбиениях сомножителей, формально совпадает с произведением этих матриц в терминах скалярных элементов. Покажем это на примере:

Упражнение1. Пусть

, ,

, ,

Это проверяется прямым вычислением

Теорема (1)

Пусть матрица из имеет блоки , где матрица, , и матрица из с блоками размера . Тогда имеет блоки

Доказательство. Отметим, что каждое произведение существует и является матрицей. Следовательно, существует и будет матрицей. Для фиксированного каждое имеет столбцов и для фиксированного каждое имеет строк, откуда следует, что блоки некоторой матрицы .

Пусть некоторый элемент матрицы , расположенный в клетке блока . Так как , есть сумма элементов в клетках и матриц , . Но элемент матрицы в клетке является суммой произведений элементов в строке матрицы на элементы столбца матрицы . Далее, элементы строки матрицы совпадают с некоторыми элементами строки в , а именно, с, где индекс определяется неравенствами

, если Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

, если

Элементы столбца матрицы будут элементами в . Следовательно,

Мы определили миноры порядка для определителя. В общем случае, если из -матрицы выбросить все строки, кроме строк , и все столбцы, кроме столбцов , то определитель полученной в результате матрицы называется минором матрицы порядка , то

Миноры, для которых , называются главными для матрицы . Если - матрица, то и алгебраическое дополнение , например, есть

Если квадратная матрица является произведением некоторых матриц (которые могут быть прямоугольными), то иногда важно выразить определитель произведения в терминах свойств сомножителей. Следующая теорема - мощный результат этого рода.

4. Теорема (формула Коши-Бине)

Пусть , - и -матрицы соответственно, и

Тогда

Другими словами, при определитель матрицы является суммой произведений всевозможных миноров порядка в на соответствующие миноры матрицы того же самого порядка.

Упражнение1. Покажем на примере

Пусть , , и , тогда по формуле Коши-Бине:

Доказательство теоремы:

Так как , то можно записать

Определитель-это аддитивная и однородная функция каждого из своих столбцов. Используя этот факт для каждого из столбцов в , выражаем в виде суммы определителей:

Те члены в суммировании, которые имеют совпадающие два или более индексов , равны нулю, так как в этих случаях миноры будут иметь по крайней мере два совпадающих столбца. Таким образом, нужно рассматривать лишь те членов суммирования, в которых индексы различны. Мы распределяем эти остающиеся члены на групп по членов в каждой таким образом, чтобы в каждой группе члены отличаются лишь порядком индексов . Отметим также, что можно написать

,

где . Следовательно, сумма по членам, в которых -перестановка чисел , задается выражением:

Переставляя элементы так, чтобы первые индексы в возрастающем порядке, приводим это выражение к виду:

где -перестановка чисел , как очевидно . Из определителя функции определителя теперь следует, что это выражение есть просто:

Следствие. Определитель произведения двух кратных матриц равен произведению определители множителей.

Это следует из Теоремы при

Заключение

В данной работе рассмотрена основная теория матриц и доказательство теоремы Коши-Бине. Также представлено применение данной теоремы при нахождении определителя произведения двух прямоугольных матриц в программе написанной на языке программирования Дельфи с возможностью ввода матриц вручную и подгрузкой из файла.

Данная теорема Коши-Бине:

Пусть , - и -матрицы соответственно, и

Тогда

На примере можно рассмотреть работу программы реализующей алгоритм нахождения определителя прямоугольных матриц на основе формулы Коши-Бине.

Будем искать миноры 2 порядка:

1)

Пусть A m = 2 n = 3

1 0 2

-1 1 1

B m = 3 n = 2

-1 -1

-2 0

1 1

получаем матрицу C m = 2 n = 2

1 1

0 2

Итого: Det C = 2

2)

Переборы:

1A) 1 2

1 0

-1 1

DetA = 1

1B) 1 2

-1 -1

-2 0

DetB = -2

2A) 1 3

1 2

-1 1

DetA = 3

2B) 1 3

-1 -1

1 1

DetB = 0

3A) 2 3

0 2

1 1

DetA = -2

3B) 2 3

-2 0

1 1

DetB = -2

C = (1)*(-2) + (3)*(0) + (-2)*(-2)

Итого по формуле Коши - Бине: 2

Данная программа наглядно показывает нахождение миноров порядка m, где m-это количество строк в матрице .

Список использованной литературы

1. Гантмахер Ф.Р. Теория матриц. - 4-е изд. - М.: Наука. Гл.ред. физ. - мат. мет., 1988. с. 13-32.

2. Фаддеев Д.К. Лекции по алгебре. - М.:Наука. Гл.ред. физ. - мат. мет., 1984.-с. 216.

3. Курош А.Г. Курс высшей алгебры. - 14 - е изд. - Спб.: Лань, 2005. - с. 322

4. Ланкастер П. Теория матриц - М.: Наука. Гл.ред. физ. - мат. мет., 2002, с. 17-44.

5. Маркус М., Минк Х. Обзор по теории матриц и матричных неравенств. - М.: Наука. Гл.ред. физ. - мат. мет., 2006, с. 232.

6. Большакова И.В. Высшая математика - Учебное издание, 2003, с. 5-10.

7. Кремер Н.Ш. Высшая математика для экономистов. - 3-е изд., 2007, с. 185.

Размещено на Allbest.ru


Подобные документы

  • Определение матрицы, характеристика основных ее видов. Правила транспонирования матриц. Элементы матрицы-произведения. Свойства определителей, примеры нахождения. Формулировка и следствие теоремы о ранге матрицы. Доказательство теоремы Кронекера-Капелли.

    реферат [60,2 K], добавлен 17.06.2014

  • Основные операции над матрицами и их свойства. Произведение матриц или перемножение матриц. Блочные матрицы. Понятие определителя. Панель инструментов Матрицы. Транспонирование. Умножение. Определитель квадратной матрицы. Модуль вектора.

    реферат [109,2 K], добавлен 06.04.2003

  • Методика расчета скалярного произведения заданных векторов. Расчет определителей и рангов матриц, нахождение обратных матриц. Разрешение уравнений по методу Крамера, обратной матрицы, а также встроенной функции lsolve. Анализ полученных результатов.

    лабораторная работа [86,8 K], добавлен 13.10.2014

  • Обратимые матрицы над полем Zp. Формула для подсчета обратимых матриц порядка 2. Формула для подсчета обратимых матриц порядка 3. Общая формула подсчета обратимых матриц над полем Zp. Обратимые матрицы над Zn.

    дипломная работа [156,7 K], добавлен 08.08.2007

  • Понятие, типы и алгебра матриц. Определители квадратной матрицы и их свойства, теоремы Лапласа и аннулирования. Понятие обратной матрицы и ее единственность, алгоритм построения и свойства. Определение единичной матрицы только для квадратных матриц.

    реферат [296,6 K], добавлен 12.06.2010

  • Понятие и назначение определителей, их общая характеристика, методика вычисления и свойства. Алгебра матриц. Системы линейных уравнений и их решение. Векторная алгебра, ее закономерности и принципы. Свойства и приложения векторного произведения.

    контрольная работа [996,2 K], добавлен 04.01.2012

  • Форма записи и методы решения системы алгебраических уравнений с n неизвестными. Умножение и нормы векторов и матриц. Свойства определителей матрицы. Собственные значения и собственные векторы. Примеры использования числовых характеристик матриц.

    реферат [203,0 K], добавлен 12.08.2009

  • Применение матриц и их виды (равные, квадратные, диагональные, единичные, нулевые, вектор-строка, вектор-столбец). Примеры действий над матрицами (умножение на число, сложение, вычитание, умножение и транспонирование матриц) и свойства полученных матриц.

    презентация [74,7 K], добавлен 21.09.2013

  • Понятие матрицы и линейные действия над ними. Свойства операции сложения матриц. Определители второго и третьего порядков. Применение правила Саррюса. Основные методы решения определителей. Элементарные преобразования матрицы. Свойства обратной матрицы.

    учебное пособие [223,0 K], добавлен 04.03.2010

  • Вычисление определителей матриц. Метод приведения матрицы к треугольному виду. Решение системы уравнений методами Крамера, Жордана-Гауса и матричным. Канонические уравнения для нахождения центра, вершины, полуоси, эксцентриситета, директрис эллипса.

    контрольная работа [797,4 K], добавлен 18.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.